分析 (1)将点E、F的坐标代入直线y=kx+b中得出关于k、b的二元一次方程,解方程即可得出结论;
(2)过点P作PD⊥x轴于点D,由P点在第一象限可得出0<x<8,再根据坐标系中点的坐标的意义可知线段OA、PD的长度,结合三角形的面积公式即可得出结论;
(3)令S=9,得出关于x的一元一次方程,解方程求出x的值,根据E、F点横坐标的数值即可得知此事点P为线段EF的中点.
解答 解:(1)∵点E(8,0),点F(0,6)在直线EF上,
∴有$\left\{\begin{array}{l}{0=8k+b}\\{6=b}\end{array}\right.$,解得:$\left\{\begin{array}{l}{k=-\frac{3}{4}}\\{b=6}\end{array}\right.$.
∴直线EF的函数关系式为y=-$\frac{3}{4}$x+6.
(2)过点P作PD⊥x轴于点D,如图所示.![]()
∵点P(x,y)是第一象限内的直线y=kx+b上的点,
∴y=-$\frac{3}{4}$x+6,且0<x<8.
∵点A的坐标为(6,0),点P的坐标为(x,-$\frac{3}{4}$x+6),
∴OA=6,PD=-$\frac{3}{4}$x+6.
△OPA的面积S=$\frac{1}{2}$OA•PD=$\frac{1}{2}$×6(-$\frac{3}{4}$x+6)=-$\frac{9}{4}$x+18(0<x<8).
(3)令S=9,即-$\frac{9}{4}$x+18=9,
解得:x=4,
∵E点横坐标为8,F点横坐标为0,
∴此时P点为线段EF的中点.
故当P运动到线段EF的中点时,△OPA的面积为9.
点评 本题考查了待定系数法求函数解析式、坐标系中点的意义、三角形的面积公式以及解一元一次方程,解题的关键是:(1)待定系数法求函数解析式;(2)找出OA、PD的长;(3)由S=9得出关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,由点在函数图象上,代入点的坐标利用待定系数法即可求得函数解析式.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2017届山东省日照市莒县第三协作区九年级3月学业水平模拟考试数学试卷(解析版) 题型:单选题
中央电视台有一个非常受欢迎的娱乐节目:墙来了!选手需按墙上的空洞造型摆出相同姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一个几何体恰好无缝隙地以三个不同形状的“姿势”穿过“墙”上的三个空洞,则该几何体为( )
![]()
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 696×103千米 | B. | 6.96×105千米 | C. | 6.96×106千米 | D. | 0.696×106千米 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com