精英家教网 > 初中数学 > 题目详情

【题目】如图,证明定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.

已知:点DE分别是ABC的边ABAC的中点.

求证:DEBCDEBC

【答案】见解析

【解析】

延长DEF,使EF=DE,连接CF,通过证明△ADE≌△CFE和证明四边形BCFD是平行四边形即可证明三角形的中位线平行于三角形的第三边并且等于第三边的一半.

证明:延长DEF,使EFDE,连接CF

EAC中点,

AECE

在△ADE和△CFE

∴△ADE≌△CFESAS),

ADCF,∠ADE=∠F

BDCF

ADBD

BDCF

∴四边形BCFD是平行四边形(一组对边平行且相等的四边形是平行四边形)

DFBCDFBC

DECBDEBC

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线BD的垂直平分线MNAD相交于点N,连接BMDN.

1)求证:四边形BMDN是菱形;

2)若AB=4AD=8,求MD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,GBC边上一点,BEAGE,DFAGF,连接DE.

(1)求证:△ABE≌△DAF;

(2)若AF=1,四边形ABED的面积为6,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在三角形中,.将三角形绕着点旋转,使得点落在直线上的点,点落在点

1)画出旋转后的三角形

2)求线段在旋转的过程中所扫过的面积(保留).

3)如果在三角形中,(其中).其他条件不变,请你用含有的代数式,直接写出线段旋转的过程中所扫过的面积(保留).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】利用勾股定理可以在数轴上画出表示的点,请依据以下思路完成画图,并保留画图痕迹:

第一步:(计算)尝试满足,使其中ab都为正整数.你取的正整数a=____b=________

第二步:(画长为的线段)以第一步中你所取的正整数ab为两条直角边长画Rt△OEF,使O为原点,点E落在数轴的正半轴上, ,则斜边OF的长即为.

请在下面的数轴上画图:(第二步不要求尺规作图,不要求写画法)

第三步:(画表示的点)在下面的数轴上画出表示的点M,并描述第三步的画图步骤:_______________________________________________________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,四边形ABCD是正方形,GCD边上的一个动点(点GC、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.

(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;

②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.

(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.

(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=,求BE2+DG2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1=∠2,∠A=∠F,求证:∠C=∠D.请阅读下面的解答过程,并填空(理由或数学式)

证明:∵∠1=∠2(已知)∠1=∠3_______

∴∠2=∠3(等量代换)

BD____________

∴∠4____________

又∵∠A=∠F(已知)

AC____________

∴∠4____________

∴∠C=∠D(等量代换)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将长方形纸片向右上方翻折,使得点和点重合,画出折痕以及翻折后的图形,折痕与长方形的边分别交于点,判断重叠部分图形的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级两个班各选派10名学生参加垃圾分类知识竞赛,各参赛选手的成绩如下:

八(1)班:889192939393949898100

八(2)班:89939393959696989899

通过整理,得到数据分析表如下

班级

最高分

平均分

中位数

众数

方差

八(1)班

100

93

93

12

八(2)班

99

95

8.4

1)求表中的值;

2)依据数据分析表,有同学认为最高分在(1)班,(1)班的成绩比(2)班好.但也有同学认为(2)班的成绩更好.请你写出两条支持八(2)班成绩更好的理由.

查看答案和解析>>

同步练习册答案