精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,对角线BD的垂直平分线MNAD相交于点N,连接BMDN.

1)求证:四边形BMDN是菱形;

2)若AB=4AD=8,求MD的长.

【答案】1)见解析;(2MD长为5

【解析】

1)根据矩形性质求出ADBC,推出∠MDO=NBO,∠DMO=BNO,证△DMO≌△BNO,推出OM=ON,得出平行四边形BMDN,推出菱形BMDN
2)根据菱形性质求出DM=BM,在RtAMB中,根据勾股定理得出BM2=AM2+AB2,即可列方程求得.

1)证明:∵四边形ABCD是矩形,

ADBC,∠A=90°

∴∠MDO=NBO,∠DMO=BNO

∵在△DMO和△BNO中,

DMO=∠BNO,∠MDO=∠NBOOBOD

∴△DMO≌△BNOAAS),

OM=ON

OB=OD

∴四边形BMDN是平行四边形,

MNBD

∴平行四边形BMDN是菱形.

2)∵四边形BMDN是菱形,∴MB=MD

MD长为x,则MB=DM=x

RtAMB中,BM2=AM2+AB2

x2=8-x2+42

解得:x=5

答:MD长为5

故答案为:(1)见解析;(2MD长为5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在ABC中,AB=AC,A=36°.

1)作∠ABC的平分线BD,交AC于点D(用尺规作图法,保留作图痕迹,不要求写作法);

(2)在(1)条件下,比较线段DA与BC的大小关系(不要求证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ACBC于C,BC=a,CA=b,AB=c,下列图形中O与ABC的某两条边或三边所在的直线相切,则O的半径为的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2

的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分别为E,F.

(1)求证:ABE≌△CDF;

(2)若AC与BD交于点O,求证:AO=CO.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.

(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_____,A,B两点间的距离是_____;

(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是_____,A,B两点间的距离为_____;

(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_____,A、B两点间的距离是_____;

(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A,B两点间的距离为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.

(1)求抛物线的解析式和顶点C的坐标;

(2)当∠APB为钝角时,求m的取值范围;

(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,PA、PB为⊙O的切线,M、NPA、AB的中点,连接MN交⊙OC,连接PC交⊙OD,连接NDPBQ,求证:MNQP为菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,证明定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.

已知:点DE分别是ABC的边ABAC的中点.

求证:DEBCDEBC

查看答案和解析>>

同步练习册答案