【题目】如图所示,PA、PB为⊙O的切线,M、N是PA、AB的中点,连接MN交⊙O点C,连接PC交⊙O于D,连接ND交PB于Q,求证:MNQP为菱形.
【答案】见解析
【解析】试题分析:连接OA,OB,OC,OD,OP. 由是的中点,根据三角形中位线的性质,可得MN∥BP.,又由PA、PB为的切线,可得AB⊥OP.可证得NM=MP,然后由射影定理与切割线定理证得O,C,D,N四点共圆,继而证得
MP∥NQ,则可得四边形MNQP是平行四边形,证得四边形MNQP是菱形.
试题解析:证明:连接OA,OB,OC,OD,OP.
∵AN=NB,AM=MP.
∴MN∥BP.
∵PA、PB为的切线,
∴AB⊥OP.
∴NM=MP,∠MNP=∠MPN,
在Rt△AOP中,由射影定理,得
由切割线定理,得
∴PNPO=PDPC,
∴O,C,D,N四点共圆,
∴∠PND=∠OCD,∠ONC=∠ODC,
∵OC=OD,
∴∠OCD=∠ODC,
∵∠MNP=∠ONC,
∴∠MNP=∠PND=∠MPN,
∴MP∥NQ,
∴四边形MNQP是平行四边形,
∴四边形MNQP是菱形.
科目:初中数学 来源: 题型:
【题目】 观察下列三行数:
2,4,8,16,32,
,1,2,4,8,
1,5,7,17,31,
如图,第一行数的第n(n为正整数)个数用来表示,第二行数的第n个数用来表示,第三行数的第n个数用来表示
(1)根据你发现的规律,请用含n的代数式表示数,,的值= ; = ; = ;
(2)取每行的第6个数,计算这三个数的和
(3)若记为x,求 (结果用含x的式子表示并化简)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点N,连接BM,DN.
(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求MD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC.
(1)求∠MON的度数;
(2)如果∠AOB=α,其他条件不变,求∠MON的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市自来水公司为鼓励居民节约用水,采取按月用水量分段收费办法,若某户居民应交交费(元)与用水量(吨)的函数关系如图所示。
(1)分别写出当和时,与的函数关系式;
(2)若某用户该月用水21吨,则应交水费多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=﹣x2+bx+c的图象经过A(2,0),B(0,﹣6)两点,
(1)求这个二次函数的解析式;
(2)设该二次函数的对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,G为BC边上一点,BE⊥AG于E,DF⊥AG于F,连接DE.
(1)求证:△ABE≌△DAF;
(2)若AF=1,四边形ABED的面积为6,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在三角形中,.将三角形绕着点旋转,使得点落在直线上的点,点落在点.
(1)画出旋转后的三角形.
(2)求线段在旋转的过程中所扫过的面积(保留).
(3)如果在三角形中,(其中).其他条件不变,请你用含有的代数式,直接写出线段旋转的过程中所扫过的面积(保留).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com