分析 (1)根据等边三角形的性质就可以证明△BCE≌△BDA,根据全等三角形的对应角相等即可解答;
(2)通过证明△APB≌△EBQ就可以得出BP=BQ,由∠EBQ=60°,就可以得出△PQB是等边三角形.
解答 解:(1)∵△BDE与△BCD均为等边三角形,
∴BE=BA,BD=BC,∠EBA=∠DBC=60°,
∴∠EBA+∠EBD=∠DBC+∠EBD,
∴∠ABD=∠EBC.
在△BCE和△BDA中,
$\left\{\begin{array}{l}{BE=BA}\\{∠ABD=∠EBC}\\{BD=BC}\end{array}\right.$
∴△BCE≌△BDA(SAS),
∴∠DAB=∠BEC;
(2)如图,连接PQ,![]()
∵△BCE≌△BDA,
∴∠DAB=∠BEC.
∵∠EBA=∠DBC=60°,
∴∠EBQ=60°,
∴∠ABE=∠EBQ.
在△ABD和△EBQ中,
$\left\{\begin{array}{l}{∠DAB=∠BEC}\\{BA=BE}\\{∠ABE=∠EBQ}\end{array}\right.$,
∴△ABD≌△EBQ(ASA),
∴BP=BQ.
∵∠EBQ=60°,
∴△PQB是等边三角形.
点评 本题考查了等边三角形的性质的运用,三角形的外角与内角的关系的运用,全等三角形的判定与性质的运用,解答时证明三角形全等是解答的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com