精英家教网 > 初中数学 > 题目详情
如图,AC是圆O的直径,PA切圆O于点A,弦BCOP,OP交圆O于点D,连接PB
(1)求证:PB是圆O的切线;
(2)若PA=3,PD=2,求圆O的半径R的长.
(1)证明:连接OB,
∵OPBC
∴∠AOP=∠C,∠BOP=∠OBC,
∵OB=OC,
∴∠C=∠OBC,
∴∠AOP=∠BOP,
∵OA=OB,OP=OP,
∴△AOP≌△BOP,
∴∠OBP=∠OAP,
∵PA切圆O于点A,
∴∠A=90°,
∴∠OBP=90°,
即OB⊥PB,
∴PB是圆O的切线,

(2)∵PA是圆的切线,
∴OA⊥AP,
∴△AOP是直角三角形,
在Rt△AOP中,由勾股定理得,(R+2)2=R2+32
解得R=
5
4
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

在梯形ABCD中,ABDC,AB>CD,K,M分别在AD,BC上,∠DAM=∠CBK.
求证:∠DMA=∠CKB.(第二届袓冲之杯初中竞赛)

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,已知△ABC中,AB=AC,以AB为直径作⊙O交BC于D,交AC于E,过D作DF⊥AC于F.
(1)求证:DF是⊙O的切线;
(2)连接DE,若AB=AC=13,BC=10,求△CDE的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD,垂足为E,DA平分∠BDE.
(1)求证:AE是⊙O的切线;
(2)若AE=2,DE=1cm,求BD的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,Rt△ABC中,∠C=90°,O是AB边上一点,⊙O与AC、BC都相切,若BC=3,AC=4,则⊙O的半径为(  )
A.1B.2C.
5
2
D.
12
7

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB、AC分别是⊙O的直径和弦,D为劣弧
AC
上一点,DE⊥AB于点H,交⊙O于点E,交AC于点F,P为ED的延长线上一点.
(1)当△PCF满足什么条件时,PC与⊙O相切.为什么?
(2)当点D在劣弧
AC
的什么位置时,才能使AD2=DE•DF.为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知⊙B的半径r=1,PA、PO是⊙B的切线,A、O是切点.过点A作弦ACPO,连接CO、AO(如图1).
(1)问△PAO与△OAC有什么关系?证明你的结论;
(2)把整个图形放在直角坐标系中(如图2),使OP与x轴重合,B点在y轴上.
设P(t,0),P点在x轴的正半轴上运动时,四边形PACO的形状随之变化,当这图形满足什么条件时,四边形PACO是菱形?说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(2下下5•三明)人图,已知⊙O1和⊙O2相交于A、B两点,直线二D、EF过点B交⊙O1于点二、E,交⊙O2于点D、F.
(1)求证:△A二D△AEF;
(2)若AB⊥二D,且在△AEF中,AF、AE、EF的长分别为3、o、5,求证:A二是⊙O2的切线.

查看答案和解析>>

同步练习册答案