精英家教网 > 初中数学 > 题目详情
如图,四边形ABCD是平行四边形,以AB为直径的⊙O经过点D,E是⊙O上一点,且∠AED=45°.
(1)试判断CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为3cm,AE=5cm,求∠ADE的正弦值.
(1)CD与⊙O相切.
理由是:连接OD.
则∠AOD=2∠AED=2×45°=90°,
∵四边形ABCD是平行四边形,
∴ABDC,
∴∠CDO=∠AOD=90°.
∴OD⊥CD,
∴CD与⊙O相切.

(2)连接BE,由圆周角定理,得∠ADE=∠ABE.
∵AB是⊙O的直径,
∴∠AEB=90°,AB=2×3=6(cm).
在Rt△ABE中,
sin∠ABE=
AE
AB
=
5
6

∴sin∠ADE=sin∠ABE=
5
6

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知正方形ABCD的边长为a,AC与BD交于点E,过点E作FGAB,且分别交AD、BC于点F、G.问:以B为圆心,
2
2
a
为半径的圆与直线AC、FG、DC的位置关系如何?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AC是圆O的直径,PA切圆O于点A,弦BCOP,OP交圆O于点D,连接PB
(1)求证:PB是圆O的切线;
(2)若PA=3,PD=2,求圆O的半径R的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交斜边AB于E,ODAB.求证:①ED是⊙O的切线;②2DE2=BE•OD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB为⊙O的弦,若OA⊥OD且CD=BD.求证:BD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P是半径为4的⊙O外一点,PA切⊙O于A,PB切⊙O于B,∠APB=60°.
求:夹在劣弧AB及,PB之间的阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在△ABC中,∠BAC=90°,AB=AC=2
2

(1)如图1,若以点A为圆心、r为半径的⊙A与BC相切于点D,求r.
(2)如图2,若⊙A的半径r=1,点O在BC上运动(点O与B、C不重合),设BO=x,△AOC的面积为y.①求y关于x的函数关系式,并写出x的取值范围.
②如图2,以点O为圆心,BO长为半径作圆,当⊙O与⊙A相切时,求△AOC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E是BC的中点,连结DE.
(1)求证:DE与⊙O相切;
(2)连结OE,若cos∠BAD=
3
5
,BE=
14
3
,求OE的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,⊙O的半径OC=5cm,直线L⊥OC,垂足为H,且L交⊙O于A,B两点,AB=8cm,则L沿OC所在直线向下平移(  )cm时与⊙O相切.
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案