精英家教网 > 初中数学 > 题目详情
如图,AB、AC分别是⊙O的直径和弦,D为劣弧
AC
上一点,DE⊥AB于点H,交⊙O于点E,交AC于点F,P为ED的延长线上一点.
(1)当△PCF满足什么条件时,PC与⊙O相切.为什么?
(2)当点D在劣弧
AC
的什么位置时,才能使AD2=DE•DF.为什么?
(1)当PC=PF(∠PCF=∠PFC或△PCF为等边三角形)时,PC与⊙O相切.
连接OC,则∠OCA=∠FAH
∵PC=PF
∴∠PCF=∠PFC=∠AFH
∵DE⊥AB于H
∴∠OCA+∠PCF=∠FAH+∠AFH=90°
即OC⊥PC
∴PC与⊙O相切

(2)当点D是弧AC的中点时,AD2=DE•DF.
连接AE
∵弧AD=弧CD
∴∠DAF=∠DEA
∵∠ADF=∠EDA
∴△DAF△DEA
AD
DE
=
DF
AD

即AD2=DE•DF.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,PA、PB、DE分别切⊙O于A、B、C,⊙O的半径为6cm,OP的长为10cm,则△PDE的周长是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知PA,PB分别切⊙O于点A、B,∠P=60°,PA=8,那么弦AB的长是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AB、AC分别是⊙O的直径和弦,点D为劣弧AC上一点,弦ED分别交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P.
(1)若PC=PF,求证:AB⊥ED;
(2)点D在劣弧AC的什么位置时,才能使AD2=DE•DF,为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,AC是圆O的直径,PA切圆O于点A,弦BCOP,OP交圆O于点D,连接PB
(1)求证:PB是圆O的切线;
(2)若PA=3,PD=2,求圆O的半径R的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠ABC=∠ACB,以AC为直径的⊙O分别交AB、BC于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.
(1)求证:直线CP是⊙O的切线;
(2)若BC=2
5
,sin∠BCP=
5
5
,求⊙O的半径及△ACP的周长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在Rt△ABC中,∠C=90°,以AC为直径的⊙O交斜边AB于E,ODAB.求证:①ED是⊙O的切线;②2DE2=BE•OD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,P是半径为4的⊙O外一点,PA切⊙O于A,PB切⊙O于B,∠APB=60°.
求:夹在劣弧AB及,PB之间的阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,AB是⊙O的直径,AC是⊙O的切线,A为切点,连接BC交⊙O于点D,若∠C=50°,则∠AOD=______•

查看答案和解析>>

同步练习册答案