精英家教网 > 初中数学 > 题目详情

【题目】为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:
(1)自行车队行驶的速度是km/h;
(2)邮政车出发多少小时与自行车队首次相遇?
(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?

【答案】
(1)24
(2)解:由题意得

邮政车的速度为:24×2.5=60km/h.

设邮政车出发a小时两车相遇,由题意得

24(a+1)=60a,

解得:a=

答:邮政车出发 小时与自行车队首次相遇


(3)解:由题意,得

邮政车到达丙地的时间为:135÷60=

∴邮政车从丙地出发的时间为:

∴B( ,135),C(7.5,0).

自行车队到达丙地的时间为:135÷24+0.5= +0.5=

∴D( ,135).

设BC的解析式为y1=k1x+b1,由题意得

∴y1=﹣60x+450,

设ED的解析式为y2=k2x+b2,由题意得

解得:

∴y2=24x﹣12.

当y1=y2时,

﹣60x+450=24x﹣12,

解得:x=5.5.

y1=﹣60×5.5+450=120.

答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.


【解析】解:(1)由题意得自行车队行驶的速度是:72÷3=24km/h.所以答案是:24;(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B的坐标和C的坐标,由自行车的速度就可以D的坐标,由待定系数法就可以求出BC,ED的解析式就可以求出结论.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中学生骑电动车上学给交通安全带来隐患,为了解某中学2 500个学生家长对“中学生骑电动车上学”的态度,从中随机调查400个家长,结果有360个家长持反对态度,则下列说法正确的是( )

A. 调查方式是普查 B. 该校只有360个家长持反对态度

C. 样本是360个家长 D. 该校约有90%的家长持反对态度

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】讲完有理数的除法后,老师在课堂上出了一道计算题:15÷(-8).不一会儿,不少同学算出了答案,老师把班上同学的解题过程归类写到黑板上.

方法一:原式=×(-)=-=-1

方法二:原式=(15+)×(-)=15×(-)+×(-)=-=-1

方法三:原式=(16-)÷(-8)=16÷(-8)-÷(-8)=-2+=-1.

对这三种方法,大家议论纷纷,你认为哪种方法最好?请说出理由,并说说本题对你有何启发.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=4BC=5AF平分∠DAEEFAE,则CF=______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】今年5月,从全国旅游景区质量等级评审会上传来喜讯,我市“风冈茶海之心”、“赤水佛光岩”、“仁怀中国酒文化城”三个景区加入国家“4A”级景区.至此,全市“4A”级景区已达13个.某旅游公司为了了解我市“4A”级景区的知名度情况,特对部分市民进行现场采访,根据市民对13个景区名字的回答情况,按答数多少分为熟悉(A),基本了解(B)、略有知晓(C)、知之甚少(D)四类进行统计,绘制了一下两幅统计图(不完整),请根据图中信息解答以下各题:
(1)本次调查活动的样本容量是
(2)调查中属于“基本了解”的市民有人;
(3)补全条形统计图;
(4)“略有知晓”类占扇形统计图的圆心角是多少度?“知之甚少”类市民占被调查人数的百分比是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边ABC的边长是2,D、E分别为AB、AC的中点,过E点作EFDCBC的延长线于点F,连接CD.

(1)求证:四边形CDEF是平行四边形;

(2)求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC=90°AD是中线,EAD的中点,过点AAFBCBE的延长线于F,连接CF.试判断四边形ADCF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.
(1)求证:CM=CN;
(2)若△CMN的面积与△CDN的面积比为3:1,求 的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,这是一种数值转换机的运算程序.

(1)若第1次输入的数为2,则第1次输出的数为1,那么第2次输出的数为4;若第1次输入的数为12,则第5次输出的数为__________

(2)若输入的数为5,求第2016次输出的数是多少.

(3)是否存在输入的数x,使第3次输出的数是x?若存在,求出所有x的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案