【题目】如图,在等腰△ABC中,AB=AC=4cm,∠B=30°,点P从点B出发,以cm/s的速度沿BC方向运动到点C停止,同时点Q从点B出发,以1cm/s的速度沿BA-AC方向运动到点C停止,若△BPQ的面积为y(cm2),运动时间为x(s),求在这一运动过程中y与x之间函数关系式.
【答案】y=.
【解析】分析:作AH⊥BC于H,根据等腰三角形的性质得BH=CH,利用∠B=30°可计算出AH=2,BH=,则BC=2BH=,利用速度公式可得点P从B点运动到C需4s,Q点运动到C需8s,然后分类当0≤x≤4时和当4<x≤8时两种情况求中y与x之间函数关系式.
详解:
作AH⊥BC于H,
∵AB=AC=4cm,
∴BH=CH,
∵∠B=30°,
∴AH=AB=2,BH=AH=2,
∴BC=2BH=4,
∵点P运动的速度为cm/s,Q点运动的速度为1cm/s,
∴点P从B点运动到C需4s,Q点运动到C需8s,
当0≤x≤4时,作QD⊥BC于D,如图1,BQ=x,BP=x,
在Rt△BDQ中,DQ=BQ=x,
∴y=xx=x2,
当4<x≤8时,作QD⊥BC于D,如图2,
CQ=8-x,BP=4
在Rt△BDQ中,DQ=CQ=(8-x),
∴y=(8-x)4=-x+8,
综上所述,y=.
科目:初中数学 来源: 题型:
【题目】阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).
请回答:BC+DE的值为________
参考小明思考问题的方法,解决问题:
如图3,已知ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从2开始,连续的偶数相加,它的和的情况如下表:
(1)当n个最小的连续偶数相加时,它们的和s与n之间的关系式为s= (用含n的式子表示)
(2)并由此计算:
①2+4+6+8+…+50;
②52+54+56+…+100.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF.
(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;
(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;
(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC的两侧,其他条件不变;
①请直接写出CF,BC,CD三条线段之间的关系;
②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是某朋的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20,21,22),若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为( )
A.32
B.126
C.135
D.144
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】完成下列各题
比较大小:________;________(用“、或”填空)
画出数轴,在数轴上表示下列各数,并用“”连接:,,,,
将有理数填入图中它所属于的集合的圈内.
已知如图:数轴上、、、四点对应的有理数分别是整数、、、,且有,则原点应是________.
.点.点.点.点.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,D、E分别是AB、BC的中点,F在CA延长线上,∠FDA=∠B,AC=6,AB=8,则四边形AEDF的周长为( )
A. 16 B. 20 C. 18 D. 22
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,E是AB的中点,连接CE并延长交AD于F.
(1)求证:△AEF≌△BEC;
(2)判断四边形BCFD是何特殊四边形,并说出理由;
(3)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,若BC=1,求AH的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com