精英家教网 > 初中数学 > 题目详情
如图,抛物线与x轴交于A、B(6,0)两点,且对称轴为直线x=2,与y轴交于点C(0,-4).
(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一个动点,连接MA、MC,当△MAC的周长最小时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形,如果存在,直接写出所有满足条件的点F的坐标,若不存在,请说明理由.
分析:(1)首先根据抛物线与x轴交于A、B(6,0)两点,且对称轴为直线x=2可以求出A的坐标,然后设所求抛物线的解析式为y=a(x+2)(x-6),接着把C的坐标代入其中即可求解;
(2)根据题意知道当△MAC的周长最小时,即MA+MC的值最小,然后连BC,交直线x=2于点M,即为所求的点.根据作图可以求出直线BC的解析式,把x=2代入其中求出y即可解决问题;
(3)存在.首先根据已知条件求出D的坐标,然后讨论:
如图(1),当AF2为平行四边形的边时,接着根据平行四边形的性质得到E的坐标;
如图(2),当AF为平行四边形的对角线时,设E′的坐标为(x,4),把E′(x,4)代入y=
1
3
x2-
4
3
x-4
x=2±2
7
,由此即可求解.
解答:解:(1)∵抛物线与x轴交于A、B(6,0)两点,且对称轴为直线x=2,
∴A(-2,0),
又∵抛物线过点A、B、C,
故设抛物线的解析式为y=a(x+2)(x-6),
将点C的坐标代入,
求得a=
1
3

∴抛物线的解析式为y=
1
3
x2-
4
3
x-4


(2)当△MAC的周长最小时,即MA+MC的值最小,
连接BC,交直线x=2于点M,即为所求的点;
∵直线BC经过B(6,0),C(0,-4),
∴直线CB的解析式为yBC=
2
3
x-4

当x=2时,y=-
8
3

M(2,-
8
3
)


(3)∵点D(4,k)在抛物线y=
1
3
x2-
4
3
x-4
上,
∴当x=4时,k=-4,
∴点D的坐标是(4,-4),
如图(1),当AF2为平行四边形的边时,
∵D(4,-4),
∴DE=4.
∴F1(-6,0);
如图(2),当AF为平行四边形的对角线时,
F的坐标为(x,0)
把F(x,0)代入y=
1
3
x2-
4
3
x-4

x=2±2
7

∴F2(2+2
7
,0),F3(2-2
7
,0).
点评:此题是二次函数的综合题,分别考查了待定系数法确定函数的解析式、平行四边形的性质及轴对称的性质,综合性比较强,要求学生有很强的综合分析问题,解决问题的能力,同时相关的基础知识也熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标;
(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•历下区一模)如图,抛物线与x轴交于A(-1,0),B(4,0)两点,与y轴交于C(0,3),M是抛物线对称轴上的任意一点,则△AMC的周长最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线与y轴交于点A(0,4),与x轴交于B、C两点.其中OB、OC是方程的x2-10x+16=0两根,且OB<OC.
(1)求抛物线的解析式;
(2)直线AC上是否存在点D,使△BCD为直角三角形.若存在,求所有D点坐标;反之说理;
(3)点P为x轴上方的抛物线上的一个动点(A点除外),连PA、PC,若设△PAC的面积为S,P点横坐标为t,则S在何范围内时,相应的点P有且只有1个.

查看答案和解析>>

同步练习册答案