精英家教网 > 初中数学 > 题目详情
如图,抛物线与y轴交于点A(0,4),与x轴交于B、C两点.其中OB、OC是方程的x2-10x+16=0两根,且OB<OC.
(1)求抛物线的解析式;
(2)直线AC上是否存在点D,使△BCD为直角三角形.若存在,求所有D点坐标;反之说理;
(3)点P为x轴上方的抛物线上的一个动点(A点除外),连PA、PC,若设△PAC的面积为S,P点横坐标为t,则S在何范围内时,相应的点P有且只有1个.
分析:(1)先求出B、C两点坐标,再将A、B、C三点坐标代入即可求得抛物线的解析式;
(2)根据待定系数法求出直线AC的解析式,再分两种情况讨论即可求解;
(3)分别求出P在抛物线AC上面积的最大值,求出P在抛物线AB上面积的最大值,依此即可求出S的取值范围.
解答:解:(1)解方程x2-10x+16=0,
得x1=2,x2=8,
则B(-2,0),C(8,0),
设抛物线解析式为y=ax2+bx+c,将A、B、C三点坐标代入抛物线得,
c=4
4a-2b+c=0
64a+8b+c=0

解得
a=-
1
4
b=1
1
2
c=4

故抛物线的解析式为y=-
1
4
x2+
3
2
x+4;

(2)设直线AC的解析式为y=kx+b,将A、C两点坐标代入得,
b=4
8k+b=0

解得
k=-
1
2
b=4

故直线AC的解析式为y=-
1
2
x+4;
直线AC上存在点D,使△BCD为直角三角形:
①∠DBC=90°时,x=-2,y=-
1
2
×(-2)+4=5,则D点坐标为(-2,5);
②∠BDC=90°时,设直线BD的解析式为y=2x+b1,则2×(-2)+b1=0,解得b1=4,故直线AC的解析式为y=2x+4;
联立两条直线的解析式
y=-
1
2
x+4
y=2x+4
,解得
x=0
y=4
,则D点坐标为(0,4);
综上所述D点坐标为(-2,5)或(0,4);

(3)P在抛物线AC上面积的最大值为16,P在抛物线AB上面积的最大值为20,
则S的取值范围为16<S<20.
点评:本题是二次函数的综合题,其中涉及到的知识点有待定系数法求一次函数和抛物线的解析式等知识点,是各地中考的热点和难点,解题时注意数形结合和分类讨论等数学思想的运用,同学们要加强训练.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,抛物线与x轴交于A(-1,0)、B(3,0)两点,与y轴交于点C(0,-3),设抛物线的顶点为D.
(1)求该抛物线的解析式与顶点D的坐标;
(2)以B、C、D为顶点的三角形是直角三角形吗?为什么?
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请指出符合条件的点P的位置,并直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,抛物线与x轴交于A(x1,0)、B(x2,0)两点,且x1<x2,与y轴交于点C(0,-4),其中x1,x2是方程x2-4x-12=0的两个根.
(1)求抛物线的解析式;
(2)点M是线段AB上的一个动点,过点M作MN∥BC,交AC于点N,连接CM,当△CMN的面积最大时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•历下区一模)如图,抛物线与x轴交于A(-1,0),B(4,0)两点,与y轴交于C(0,3),M是抛物线对称轴上的任意一点,则△AMC的周长最小值是
10
+5
10
+5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,抛物线与x轴交于A、B(6,0)两点,且对称轴为直线x=2,与y轴交于点C(0,-4).
(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一个动点,连接MA、MC,当△MAC的周长最小时,求点M的坐标;
(3)点D(4,k)在(1)中抛物线上,点E为抛物线上一动点,在x轴上是否存在点F,使以A、D、E、F为顶点的四边形是平行四边形,如果存在,直接写出所有满足条件的点F的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案