·ÖÎö £¨1£©¸ù¾Ý¶Ô³ÆÖ᣺x=$-\frac{b}{2a}$¼´¿ÉÇóµÃÅ×ÎïÏߵĶԳÆÖᣬȻºóÁîx=0µÃy=-$\sqrt{3}$£¬ËùÒÔOC=$\sqrt{3}$£¬Áîy=0µÃ£º$\frac{\sqrt{3}}{3}{x}^{2}+\frac{2\sqrt{3}}{3}x-\sqrt{3}=0$£¬ËùÒÔAB=4£¬ÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½¼ÆËã¼´¿É£»
£¨2£©Èçͼ1Ëùʾ£ºÔÚRt¡÷AOCºÍRt¡÷OBCÖУ¬ÀûÓÃÌØÊâÈñ½ÇÈý½Çº¯ÊýÖµ¿ÉÖªÇóµÃ¡ÏABC=60¡ã£¬¡ÏBCO=30¡ã£¬´Ó¶øµÃµ½¡ÏACB=90¡ã£¬ÑÓ³¤BCÖÁB¡äʹB¡äC=BC£¬Á¬½ÓQB¡ä½»ACÓÚµãK£¬´Ëʱ¡÷BQKÖܳ¤×îС£¬¸ù¾ÝÖá¶Ô³ÆµÄÐÔÖÊ¿ÉÖªµãB¡äµÄ×ø±êΪ£¨-1£¬-2$\sqrt{3}$£©£¬È»ºó¿ÉÇóµÃÖ±ÏßQB¡äµÄ½âÎöʽΪy=3$\sqrt{3}x+\sqrt{3}$£¬È»ºó½«y=3$\sqrt{3}x+\sqrt{3}$Óëy=$\frac{\sqrt{3}}{3}{x}^{2}+\frac{2}{3}\sqrt{3}x-\sqrt{3}$£¬×é³É·½³Ì×é¿ÉÇóµÃµãPµÄ×ø±ê£¬×îºóÔÚRt¡÷OBQºÍRt¡÷MB¡äQÖУ¬ÀûÓù´¹É¶¨ÀíÇóµÃQB¡äÓëQB³¤¶È¼´¿ÉÇóµÃ¡÷BQKµÄ×îСֵ£»
£¨3£©£©¢ÙÈçͼ3Ëùʾ£ºÑÓ³¤CF½ÇA¡äAÓëµãM£®ÔÚ¡÷ACOÖУ¬Óɹ´¹É¶¨ÀíÇóµÃ£ºAC=$\sqrt{O{A}^{2}+O{C}^{2}}$=2$\sqrt{3}$£®´Ó¶øµÃµ½µãA¡äµÄ×ø±êΪ£¨0£¬$\sqrt{3}$£©£¬È»ºóÓÉÖеã×ø±ê¹«Ê½¿ÉÇóµÃµãMµÄ×ø±êΪ£¨$-\frac{3}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬ÉèÖ±ÏßFCµÄ½âÎöʽΪy=kx-$\sqrt{3}$£¬½«µãMµÄ×ø±ê´úÈë¿ÉÇóµÃÖ±ÏßFCµÄ½âÎöʽΪy=-$\sqrt{3}x-\sqrt{3}$£¬Áîy=0¿É½âµÃµãFµÄ×ø±êΪ£¨-1£¬0£©£»
¢ÚÈçͼ4ËùʾÏÈÖ¤Ã÷ËıßÐÎOCEA¡äΪ¾ØÐΣ¬´Ó¶ø¿ÉÇóµÃµãFÊÇAA¡äµÄÖе㣬´Ó¶ø¿ÉÇóµÃµãFµÄ×ø±ê£»¢ÛÈçͼ5Ëùʾ£ºÓÉ·ÕÛµÄÐÔÖÊ¿ÉÖª£ºCF¡ÍAA¡ä£¬ÏÈÇóµÃACµÄ½âÎöʽ£¬¸ù¾ÝÏ໥´¹Ö±µÄÁ½Ö±ÏßµÄÒ»´ÎÏîϵÊýµÄ³Ë»ýΪ-1£¬¿ÉÇóµÃCFµÄ½âÎöʽ£¬´Ó¶ø¿ÉÇóµÃµãFµÄ×ø±ê£»¢ÜÈçͼ6Ëùʾ£ºÑÓ³¤FC½»AA¡äÓÚµãN£®ÏÈÇóµÃÖ±ÏßAA¡äµÄ½âÎöʽ£¬¸ù¾ÝÏ໥´¹Ö±µÄÁ½Ö±ÏßµÄÒ»´ÎÏîϵÊýµÄ³Ë»ýΪ-1£¬¿ÉÇóµÃCFµÄ½âÎöʽ£¬´Ó¶ø¿ÉÇóµÃµãFµÄ×ø±ê£®
½â´ð ½â£º£¨1£©¶Ô³ÆÖ᣺x=$-\frac{b}{2a}$=-$\frac{\frac{2\sqrt{3}}{3}}{2¡Á\frac{\sqrt{3}}{3}}$=-1£¬
Áîx=0µÃy=-$\sqrt{3}$£¬
ËùÒÔµãCµÄ×ø±êΪ£¨0£¬-$\sqrt{3}$£©£®
Áîy=0µÃ£º$\frac{\sqrt{3}}{3}{x}^{2}+\frac{2\sqrt{3}}{3}x-\sqrt{3}=0$£¬
½âµÃ£ºx1=-3£¬x2=1£¬
¡àA¡¢BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨-3£¬0£©¡¢£¨1£¬0£©£®
¡àAB=4£¬OC=$\sqrt{3}$£®
¡à¡÷ABCµÄÃæ»ý=$\frac{1}{2}¡ÁAB•OC$=$\frac{1}{2}¡Á4¡Á\sqrt{3}$=2$\sqrt{3}$£®
£¨2£©Èçͼ1Ëùʾ£º![]()
ÔÚRt¡÷AOCÖУ¬tan¡ÏACO=$\frac{AO}{CO}$=$\frac{3}{\sqrt{3}}$=$\sqrt{3}$£¬ÔÚRt¡÷OBCÖУ¬tan¡ÏBCO=$\frac{OB}{OC}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$£¬
¡à¡ÏABC=60¡ã£¬¡ÏBCO=30¡ã£®
¡à¡ÏACB=90¡ã£®
ÑÓ³¤BCÖÁB¡äʹB¡äC=BC£¬Á¬½ÓQB¡ä½»ACÓÚµãK£¬´Ëʱ¡÷BQKÖܳ¤×îС£¬
¡ßµãBÓëµãB¡äÓë¹ØÓÚAC¶Ô³Æ£¬
ËùÒÔµãB¡äµÄ×ø±êΪ£¨-1£¬-2$\sqrt{3}$£©£¬
ÉèB¡äQµÄ½âÎöʽΪy=kx+b£¬Ôò
$\left\{\begin{array}{l}{-k+b=-2\sqrt{3}}\\{b=\sqrt{3}}\end{array}\right.$£®
½âµÃ£º$\left\{\begin{array}{l}{k=3\sqrt{3}}\\{b=\sqrt{3}}\end{array}\right.$£¬
ËùÒÔÖ±ÏßQB¡äµÄ½âÎöʽΪy=3$\sqrt{3}x+\sqrt{3}$£®
¸ù¾ÝÌâÒâµÃ£º3$\sqrt{3}x+\sqrt{3}$=$\frac{\sqrt{3}}{3}{x}^{2}+\frac{2}{3}\sqrt{3}x-\sqrt{3}$£¬½âµÃ£º${x}_{1}=\frac{7-\sqrt{73}}{2}$£¬${x}_{2}=\frac{7+\sqrt{73}}{2}$£¨ÉáÈ¥£©£¬
½«x=$\frac{7-\sqrt{73}}{2}$´úÈëy=3$\sqrt{3}x+\sqrt{3}$µÃ£ºy=$\frac{23\sqrt{3}-3\sqrt{219}}{2}$£®
¡àµãPµÄ×ø±êΪ£¨$\frac{7-\sqrt{73}}{2}$£¬$\frac{23\sqrt{3}-3\sqrt{219}}{2}$£©
ÔÚRt¡÷OBQÖУ¬QB=$\sqrt{O{Q}^{2}+0{B}^{2}}=\sqrt{£¨\sqrt{3}£©^{2}+{1}^{2}}$=2£¬ÔÚRt¡÷MB¡äQÖУ¬QB¡ä=$\sqrt{Q{M}^{2}+B¡ä{M}^{2}}$=$\sqrt{£¨3\sqrt{3}£©^{2}+{1}^{2}}$=2$\sqrt{7}$£®
¡÷BQKµÄÖܳ¤=QB+QK+KB=QB¡ä+QB=2+2$\sqrt{7}$£®
£¨3£©¢ÙÈçͼ3Ëùʾ£ºÑÓ³¤CF½ÇA¡äAÓëµãM£®![]()
ÔÚ¡÷ACOÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºAC=$\sqrt{O{A}^{2}+O{C}^{2}}$=2$\sqrt{3}$£®
ÓÉ·ÕÛµÄÐÔÖÊ¿ÉÖªAC=A¡äC=2$\sqrt{3}$£¬
¡àµãA¡äµÄ×ø±êΪ£¨0£¬$\sqrt{3}$£©£®
¡àµãMµÄ×ø±êΪ£¨$-\frac{3}{2}$£¬$\frac{\sqrt{3}}{2}$£©£®
ÉèÖ±ÏßFCµÄ½âÎöʽΪy=kx-$\sqrt{3}$£¬½«µãMµÄ×ø±ê´úÈëµÃ£º-$\frac{3}{2}$k-$\sqrt{3}$=$\frac{\sqrt{3}}{2}$£®
½âµÃ£ºk=-$\sqrt{3}$£®
¡àÖ±ÏßFCµÄ½âÎöʽΪy=-$\sqrt{3}x-\sqrt{3}$£®
Áîy=0µÃ£º-$\sqrt{3}x-\sqrt{3}=0$£®
½âµÃ£ºx=-1£®
¡àµãFµÄ×ø±êΪ£¨-1£¬0£©£®
¢ÚÈçͼ4Ëùʾ£º![]()
¡ß¡ÏA¡äEC=90¡ã£¬
¡à¡ÏEA¡äF=¡ÏA¡äOC=¡ÏA¡äEC=90¡ã£®
¡àËıßÐÎOCEA¡äÊǾØÐΣ®
¡àCE=OA¡ä=OA£®
¡àµãFÊÇAA¡äµÄÖе㣮
¡àµãFµÄ×ø±êΪ£¨0£¬0£©£®
¢ÛÈçͼ5Ëùʾ£ºµ±µãA¡¢C¡¢A¡äÔÚͬһÌõÖ±ÏßÉÏʱ£®![]()
ÓÉ·ÕÛµÄÐÔÖÊ¿ÉÖª£ºCF¡ÍAA¡ä£®
ÉèACµÄ½âÎöʽΪy=kx-$\sqrt{3}$£¬½«µãAµÄ×ø±ê´úÈëµÃ£º-3k-$\sqrt{3}$=0£®
½âµÃ£ºk=$-\frac{\sqrt{3}}{3}$£®
¡ßCF¡ÍAC£¬
¡àÖ±ÏßCFµÄ½âÎöʽΪy=$\sqrt{3}x-\sqrt{3}$£®
½«y=0´úÈëµÃ£ºx=1£®
¡àµãFµÄ×ø±êΪ£¨1£¬0£©£®
¢ÜÈçͼ6Ëùʾ£ºÑÓ³¤FC½»AA¡äÓÚµãN£®![]()
ÓÉ·ÕÛµÄÐÔÖÊ¿ÉÖª£ºCF¡ÍAA¡ä£¬AN=A¡äN£¬AC=A¡äC=2$\sqrt{3}$£®
¡àµãA¡äµÄ×ø±êΪ£¨0£¬-3$\sqrt{3}$£©£®
ÓɵãAºÍµãA¡äµÄ×ø±ê¿ÉÖª£ºµãNµÄ×ø±êΪ£¨$-\frac{3}{2}$£¬$-\frac{3\sqrt{3}}{2}$£©£®
ÉèÖ±ÏßCFµÄ½âÎöʽΪy=kx-$\sqrt{3}$£¬½«µãNµÄ×ø±ê´úÈëµÃ£º$-\frac{3}{2}k-\sqrt{3}=-\frac{3\sqrt{3}}{3}$£®
½âµÃ£ºk=$\frac{\sqrt{3}}{3}$£®
¡àCFµÄ½âÎöʽΪy=$\frac{\sqrt{3}}{3}x-\sqrt{3}$£®
Áîy=0µÃ£º$\frac{\sqrt{3}}{3}x-\sqrt{3}=0$£®
½âµÃ£ºx=3£®
¡àµãFµÄ×ø±êΪ£¨3£¬0£©£®
×ÛÉÏËùÊö£¬µãFµÄ×ø±êΪ£¨-1£¬0£©»ò£¨0£¬0£©»ò£¨1£¬0£©»ò£¨3£¬0£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁ˶þ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ¡¢Ò»´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÏàËÆÈý½ÇÐεÄÐÔÖʺÍÅж¨¡¢·ÕÛµÄÐÔÖÊ¡¢¹´¹É¶¨ÀíºÍ½âÒ»Ôª¶þ´Î·½³ÌµÈ֪ʶµã£¬ÕÒ³ö¡÷BQKÖܳ¤×îСºÍ¡÷CEA¡äÊÇÖ±½ÇÈý½ÇÐεÄÌõ¼þ£¬´Ó¶ø»³öͼÐÎÊǽâÌâµÄ¹Ø¼ü£®
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| ·Ö×é | 74.5¡«79.5 | 79.5¡«84.5 | 84.5¡«89.5 | 89.5¡«94.5 | 94.5¡«100.5 | ºÏ¼Æ |
| ƵÊý | 2 | a | 20 | 16 | 4 | 50 |
| ƵÂÊ | 0.04 | 0.16 | 0.40 | 0.32 | b | 1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com