13£®Èçͼ£¬Å×ÎïÏßy=$\frac{\sqrt{3}}{3}{x}^{2}+\frac{2}{3}\sqrt{3}x-\sqrt{3}$½»xÖáÓÚµãA¡¢B£¬½»yÖáÓÚµãC£®
£¨1£©Çó¸ÃÅ×ÎïÏߵĶԳÆÖá¼°¡÷ABCµÄÃæ»ý£®
£¨2£©Èçͼ1£¬ÒÑÖªµãQ£¨0£¬$\sqrt{3}$£©£¬µãPÊÇÖ±ÏßACÏ·½Å×ÎïÏßÉϵÄÒ»¶¯µã£¬Á¬½ÓPQ½»Ö±ÏßACÓÚµãK£¬Á¬½ÓBQ¡¢BK£¬µ±µãPʹµÃ¡÷BQKÖܳ¤×îСʱ£¬ÇëÇó³ö¡÷BQKÖܳ¤µÄ×îСֵºÍ´ËʱµãPµÄºá×ø±ê£®
£¨3£©Èçͼ2£¬Ïß¶ÎACˮƽÏòÓÒÆ½ÒƵÃÏß¶ÎFE£¨µãAµÄ¶ÔÓ¦µãÊÇF£¬µãCµÄ¶ÔÓ¦µãÊÇE£©£¬½«¡÷ACFÑØCF·­Õ۵á÷CFA¡ä£¬Á¬½ÓA¡äE£¬ÊÇ·ñ´æÔÚµãF£¬Ê¹µÃ¡÷CEA¡äÊÇÖ±½ÇÈý½ÇÐΣ¿Èô´æÔÚ£¬ÇëÇó³öµãFµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý¶Ô³ÆÖ᣺x=$-\frac{b}{2a}$¼´¿ÉÇóµÃÅ×ÎïÏߵĶԳÆÖᣬȻºóÁîx=0µÃy=-$\sqrt{3}$£¬ËùÒÔOC=$\sqrt{3}$£¬Áîy=0µÃ£º$\frac{\sqrt{3}}{3}{x}^{2}+\frac{2\sqrt{3}}{3}x-\sqrt{3}=0$£¬ËùÒÔAB=4£¬ÀûÓÃÈý½ÇÐεÄÃæ»ý¹«Ê½¼ÆËã¼´¿É£»
£¨2£©Èçͼ1Ëùʾ£ºÔÚRt¡÷AOCºÍRt¡÷OBCÖУ¬ÀûÓÃÌØÊâÈñ½ÇÈý½Çº¯ÊýÖµ¿ÉÖªÇóµÃ¡ÏABC=60¡ã£¬¡ÏBCO=30¡ã£¬´Ó¶øµÃµ½¡ÏACB=90¡ã£¬ÑÓ³¤BCÖÁB¡äʹB¡äC=BC£¬Á¬½ÓQB¡ä½»ACÓÚµãK£¬´Ëʱ¡÷BQKÖܳ¤×îС£¬¸ù¾ÝÖá¶Ô³ÆµÄÐÔÖÊ¿ÉÖªµãB¡äµÄ×ø±êΪ£¨-1£¬-2$\sqrt{3}$£©£¬È»ºó¿ÉÇóµÃÖ±ÏßQB¡äµÄ½âÎöʽΪy=3$\sqrt{3}x+\sqrt{3}$£¬È»ºó½«y=3$\sqrt{3}x+\sqrt{3}$Óëy=$\frac{\sqrt{3}}{3}{x}^{2}+\frac{2}{3}\sqrt{3}x-\sqrt{3}$£¬×é³É·½³Ì×é¿ÉÇóµÃµãPµÄ×ø±ê£¬×îºóÔÚRt¡÷OBQºÍRt¡÷MB¡äQÖУ¬ÀûÓù´¹É¶¨ÀíÇóµÃQB¡äÓëQB³¤¶È¼´¿ÉÇóµÃ¡÷BQKµÄ×îСֵ£»
£¨3£©£©¢ÙÈçͼ3Ëùʾ£ºÑÓ³¤CF½ÇA¡äAÓëµãM£®ÔÚ¡÷ACOÖУ¬Óɹ´¹É¶¨ÀíÇóµÃ£ºAC=$\sqrt{O{A}^{2}+O{C}^{2}}$=2$\sqrt{3}$£®´Ó¶øµÃµ½µãA¡äµÄ×ø±êΪ£¨0£¬$\sqrt{3}$£©£¬È»ºóÓÉÖеã×ø±ê¹«Ê½¿ÉÇóµÃµãMµÄ×ø±êΪ£¨$-\frac{3}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬ÉèÖ±ÏßFCµÄ½âÎöʽΪy=kx-$\sqrt{3}$£¬½«µãMµÄ×ø±ê´úÈë¿ÉÇóµÃÖ±ÏßFCµÄ½âÎöʽΪy=-$\sqrt{3}x-\sqrt{3}$£¬Áîy=0¿É½âµÃµãFµÄ×ø±êΪ£¨-1£¬0£©£»
¢ÚÈçͼ4ËùʾÏÈÖ¤Ã÷ËıßÐÎOCEA¡äΪ¾ØÐΣ¬´Ó¶ø¿ÉÇóµÃµãFÊÇAA¡äµÄÖе㣬´Ó¶ø¿ÉÇóµÃµãFµÄ×ø±ê£»¢ÛÈçͼ5Ëùʾ£ºÓÉ·­ÕÛµÄÐÔÖÊ¿ÉÖª£ºCF¡ÍAA¡ä£¬ÏÈÇóµÃACµÄ½âÎöʽ£¬¸ù¾ÝÏ໥´¹Ö±µÄÁ½Ö±ÏßµÄÒ»´ÎÏîϵÊýµÄ³Ë»ýΪ-1£¬¿ÉÇóµÃCFµÄ½âÎöʽ£¬´Ó¶ø¿ÉÇóµÃµãFµÄ×ø±ê£»¢ÜÈçͼ6Ëùʾ£ºÑÓ³¤FC½»AA¡äÓÚµãN£®ÏÈÇóµÃÖ±ÏßAA¡äµÄ½âÎöʽ£¬¸ù¾ÝÏ໥´¹Ö±µÄÁ½Ö±ÏßµÄÒ»´ÎÏîϵÊýµÄ³Ë»ýΪ-1£¬¿ÉÇóµÃCFµÄ½âÎöʽ£¬´Ó¶ø¿ÉÇóµÃµãFµÄ×ø±ê£®

½â´ð ½â£º£¨1£©¶Ô³ÆÖ᣺x=$-\frac{b}{2a}$=-$\frac{\frac{2\sqrt{3}}{3}}{2¡Á\frac{\sqrt{3}}{3}}$=-1£¬
Áîx=0µÃy=-$\sqrt{3}$£¬
ËùÒÔµãCµÄ×ø±êΪ£¨0£¬-$\sqrt{3}$£©£®
Áîy=0µÃ£º$\frac{\sqrt{3}}{3}{x}^{2}+\frac{2\sqrt{3}}{3}x-\sqrt{3}=0$£¬
½âµÃ£ºx1=-3£¬x2=1£¬
¡àA¡¢BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨-3£¬0£©¡¢£¨1£¬0£©£®
¡àAB=4£¬OC=$\sqrt{3}$£®
¡à¡÷ABCµÄÃæ»ý=$\frac{1}{2}¡ÁAB•OC$=$\frac{1}{2}¡Á4¡Á\sqrt{3}$=2$\sqrt{3}$£®
£¨2£©Èçͼ1Ëùʾ£º

ÔÚRt¡÷AOCÖУ¬tan¡ÏACO=$\frac{AO}{CO}$=$\frac{3}{\sqrt{3}}$=$\sqrt{3}$£¬ÔÚRt¡÷OBCÖУ¬tan¡ÏBCO=$\frac{OB}{OC}=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}$£¬
¡à¡ÏABC=60¡ã£¬¡ÏBCO=30¡ã£®
¡à¡ÏACB=90¡ã£®
ÑÓ³¤BCÖÁB¡äʹB¡äC=BC£¬Á¬½ÓQB¡ä½»ACÓÚµãK£¬´Ëʱ¡÷BQKÖܳ¤×îС£¬
¡ßµãBÓëµãB¡äÓë¹ØÓÚAC¶Ô³Æ£¬
ËùÒÔµãB¡äµÄ×ø±êΪ£¨-1£¬-2$\sqrt{3}$£©£¬
ÉèB¡äQµÄ½âÎöʽΪy=kx+b£¬Ôò
$\left\{\begin{array}{l}{-k+b=-2\sqrt{3}}\\{b=\sqrt{3}}\end{array}\right.$£®
½âµÃ£º$\left\{\begin{array}{l}{k=3\sqrt{3}}\\{b=\sqrt{3}}\end{array}\right.$£¬
ËùÒÔÖ±ÏßQB¡äµÄ½âÎöʽΪy=3$\sqrt{3}x+\sqrt{3}$£®
¸ù¾ÝÌâÒâµÃ£º3$\sqrt{3}x+\sqrt{3}$=$\frac{\sqrt{3}}{3}{x}^{2}+\frac{2}{3}\sqrt{3}x-\sqrt{3}$£¬½âµÃ£º${x}_{1}=\frac{7-\sqrt{73}}{2}$£¬${x}_{2}=\frac{7+\sqrt{73}}{2}$£¨ÉáÈ¥£©£¬
½«x=$\frac{7-\sqrt{73}}{2}$´úÈëy=3$\sqrt{3}x+\sqrt{3}$µÃ£ºy=$\frac{23\sqrt{3}-3\sqrt{219}}{2}$£®
¡àµãPµÄ×ø±êΪ£¨$\frac{7-\sqrt{73}}{2}$£¬$\frac{23\sqrt{3}-3\sqrt{219}}{2}$£©
ÔÚRt¡÷OBQÖУ¬QB=$\sqrt{O{Q}^{2}+0{B}^{2}}=\sqrt{£¨\sqrt{3}£©^{2}+{1}^{2}}$=2£¬ÔÚRt¡÷MB¡äQÖУ¬QB¡ä=$\sqrt{Q{M}^{2}+B¡ä{M}^{2}}$=$\sqrt{£¨3\sqrt{3}£©^{2}+{1}^{2}}$=2$\sqrt{7}$£®
¡÷BQKµÄÖܳ¤=QB+QK+KB=QB¡ä+QB=2+2$\sqrt{7}$£®
£¨3£©¢ÙÈçͼ3Ëùʾ£ºÑÓ³¤CF½ÇA¡äAÓëµãM£®

ÔÚ¡÷ACOÖУ¬Óɹ´¹É¶¨ÀíµÃ£ºAC=$\sqrt{O{A}^{2}+O{C}^{2}}$=2$\sqrt{3}$£®
ÓÉ·­ÕÛµÄÐÔÖÊ¿ÉÖªAC=A¡äC=2$\sqrt{3}$£¬
¡àµãA¡äµÄ×ø±êΪ£¨0£¬$\sqrt{3}$£©£®
¡àµãMµÄ×ø±êΪ£¨$-\frac{3}{2}$£¬$\frac{\sqrt{3}}{2}$£©£®
ÉèÖ±ÏßFCµÄ½âÎöʽΪy=kx-$\sqrt{3}$£¬½«µãMµÄ×ø±ê´úÈëµÃ£º-$\frac{3}{2}$k-$\sqrt{3}$=$\frac{\sqrt{3}}{2}$£®
½âµÃ£ºk=-$\sqrt{3}$£®
¡àÖ±ÏßFCµÄ½âÎöʽΪy=-$\sqrt{3}x-\sqrt{3}$£®
Áîy=0µÃ£º-$\sqrt{3}x-\sqrt{3}=0$£®
½âµÃ£ºx=-1£®
¡àµãFµÄ×ø±êΪ£¨-1£¬0£©£®
¢ÚÈçͼ4Ëùʾ£º

¡ß¡ÏA¡äEC=90¡ã£¬
¡à¡ÏEA¡äF=¡ÏA¡äOC=¡ÏA¡äEC=90¡ã£®
¡àËıßÐÎOCEA¡äÊǾØÐΣ®
¡àCE=OA¡ä=OA£®
¡àµãFÊÇAA¡äµÄÖе㣮
¡àµãFµÄ×ø±êΪ£¨0£¬0£©£®
¢ÛÈçͼ5Ëùʾ£ºµ±µãA¡¢C¡¢A¡äÔÚͬһÌõÖ±ÏßÉÏʱ£®

ÓÉ·­ÕÛµÄÐÔÖÊ¿ÉÖª£ºCF¡ÍAA¡ä£®
ÉèACµÄ½âÎöʽΪy=kx-$\sqrt{3}$£¬½«µãAµÄ×ø±ê´úÈëµÃ£º-3k-$\sqrt{3}$=0£®
½âµÃ£ºk=$-\frac{\sqrt{3}}{3}$£®
¡ßCF¡ÍAC£¬
¡àÖ±ÏßCFµÄ½âÎöʽΪy=$\sqrt{3}x-\sqrt{3}$£®
½«y=0´úÈëµÃ£ºx=1£®
¡àµãFµÄ×ø±êΪ£¨1£¬0£©£®
¢ÜÈçͼ6Ëùʾ£ºÑÓ³¤FC½»AA¡äÓÚµãN£®

ÓÉ·­ÕÛµÄÐÔÖÊ¿ÉÖª£ºCF¡ÍAA¡ä£¬AN=A¡äN£¬AC=A¡äC=2$\sqrt{3}$£®
¡àµãA¡äµÄ×ø±êΪ£¨0£¬-3$\sqrt{3}$£©£®
ÓɵãAºÍµãA¡äµÄ×ø±ê¿ÉÖª£ºµãNµÄ×ø±êΪ£¨$-\frac{3}{2}$£¬$-\frac{3\sqrt{3}}{2}$£©£®
ÉèÖ±ÏßCFµÄ½âÎöʽΪy=kx-$\sqrt{3}$£¬½«µãNµÄ×ø±ê´úÈëµÃ£º$-\frac{3}{2}k-\sqrt{3}=-\frac{3\sqrt{3}}{3}$£®
½âµÃ£ºk=$\frac{\sqrt{3}}{3}$£®
¡àCFµÄ½âÎöʽΪy=$\frac{\sqrt{3}}{3}x-\sqrt{3}$£®
Áîy=0µÃ£º$\frac{\sqrt{3}}{3}x-\sqrt{3}=0$£®
½âµÃ£ºx=3£®
¡àµãFµÄ×ø±êΪ£¨3£¬0£©£®
×ÛÉÏËùÊö£¬µãFµÄ×ø±êΪ£¨-1£¬0£©»ò£¨0£¬0£©»ò£¨1£¬0£©»ò£¨3£¬0£©£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²éµÄÊǶþ´Îº¯ÊýµÄ×ÛºÏÓ¦Ó㬽â´ð±¾ÌâÖ÷ÒªÓ¦ÓÃÁ˶þ´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ¡¢Ò»´Îº¯ÊýµÄͼÏóºÍÐÔÖÊ£¬ÏàËÆÈý½ÇÐεÄÐÔÖʺÍÅж¨¡¢·­ÕÛµÄÐÔÖÊ¡¢¹´¹É¶¨ÀíºÍ½âÒ»Ôª¶þ´Î·½³ÌµÈ֪ʶµã£¬ÕÒ³ö¡÷BQKÖܳ¤×îСºÍ¡÷CEA¡äÊÇÖ±½ÇÈý½ÇÐεÄÌõ¼þ£¬´Ó¶ø»­³öͼÐÎÊǽâÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®¼ÆË㣺£¨1+$\frac{1}{2}$£©£¨1+$\frac{1}{{2}^{2}}$£©£¨1+$\frac{1}{{2}^{4}}$£©£¨1+$\frac{1}{{2}^{8}}$£©=2-$\frac{1}{{2}^{15}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®·Ö½âÒòʽ£º
£¨1£©£¨x-y£©2-ax+ay£»
£¨2£©10m£¨x-y£©2-5n£¨y-x£©£»
£¨3£©2amxn+8amxn-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®¡÷ABCÖУ¬AB=AC£¬½«Ïß¶ÎABÈÆµãA°´ÄæÊ±Õë·½ÏòÐýת¦ÁµÃµ½Ïß¶ÎAD£¬ÆäÖÐ0¡ã£¼¦Á£¼180¡ã£®Á¬½áBD£¬CD£¬¡ÏDAC=m¡ÏDBC£®
£¨1£©Èô¡ÏBAC=60¡ã£¬¦Á=30¡ã£¬ÔÚͼ1Öв¹È«Í¼ÐΣ¬²¢Ð´³ömÖµ£®
£¨2£©Èçͼ2£¬µ±¡ÏBACΪ¶Û½Ç£¬¡ÏBAC£¼¦Áʱ£¬mÖµÊÇ·ñ·¢Éú¸Ä±ä£¿Ö¤Ã÷ÄãµÄ²ÂÏ룮
£¨3£©Èçͼ3£¬¡ÏBAC=90¡ã£¬¡ÏDBC+¡ÏDAC=45¡ã£¬BDÓëACÏཻÓÚµãO£¬Çó¡÷CODÓë¡÷AOBµÄÃæ»ý±È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®Èçͼ£¬ËıßÐÎABCDÖУ¬¡ÏBAD=60¡ã£¬¡ÏBCD=30¡ã£¬AB=AD£¬BC=8cm£¬CD=5cm£¬ÔòACµÄ³¤Îª$\sqrt{89}$cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÎÒУÒÕÊõ½ÚÆÚ¼ä£¬¿ªÕ¹ÁË¡°°ÍÊñºÃÉùÒô¡±¸è³ª±ÈÈü£¬ÔÚ³õÈüÖУ¬Ñ§Éú´¦¶Ô³õÈü³É¼¨×öÁËͳ¼Æ·ÖÎö£¬»æÖƳÉÈçÏÂÆµÊý¡¢ÆµÂÊ·Ö²¼±íºÍƵÊý·Ö²¼Ö±·½Í¼£¨Èçͼ£©£¬ÇëÄã¸ù¾Ýͼ±íÌṩµÄÐÅÏ¢£¬½â´ðÏÂÁÐÎÊÌ⣺
·Ö×é74.5¡«79.579.5¡«84.584.5¡«89.589.5¡«94.594.5¡«100.5ºÏ¼Æ
ƵÊý2a2016450
ƵÂÊ0.040.160.400.32b1
£¨1£©ÆµÊý¡¢ÆµÂÊ·Ö²¼±íÖÐa=8£¬b=0.08£»
£¨2£©²¹È«ÆµÊý·Ö²¼Ö±·½Í¼£»
£¨3£©³õÈü³É¼¨ÔÚ94.5-100.5·ÖµÄËÄλͬѧǡºÃÊdzõÒ»¡¢³õ¶þ¡¢¸ßÒ»¡¢¸ß¶þÄê¼¶¸÷һλ£¬Ñ§Éú´¦´òËã´ÓÖÐËæ»úÌôÑ¡Á½Î»Í¬Ñ§Ì¸Ò»Ï¾öÈüǰµÄѵÁ·£¬ÇëÄãÓÃÁÐ±í·¨»ò»­Ê÷״ͼµÄ·½·¨Çó³öËùÑ¡Á½Î»Í¬Ñ§Ç¡ºÃÊÇÒ»Ãû³õÖкÍÒ»Ãû¸ßÖÐͬѧµÄ¸ÅÂÊ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Ä³¹ûÅ©ÓÃÈô¸ÉÁ¾ÔØÖØÁ¿Îª10¶ÖµÄÆû³µÔËÒ»ÅúÏã½¶µ½Åú·¢Êг¡³öÊÛ£¬ÈôÿÁ¾Æû³µÖ»×°5¶Ö£¬ÔòÊ£ÏÂ15¶ÖÏã½¶£»ÈôÿÁ¾Æû³µ×°Âú10¶Ö£¬Ôò×îºóÒ»Á¾Æû³µ²»ÂúÒ²²»¿Õ£®ÇëÎÊÕâÅúÏã½¶¹²ÓжàÉÙ¶Ö£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÈçͼËùʾ£¬E£¬DÊÇAB£¬ACÉϵÄÁ½µã£¬BD£¬CE½»ÓÚµãO£¬ÇÒAB=AC£¬Ê¹¡÷ACE¡Õ¡÷ABD£¬Äã²¹³äµÄÌõ¼þÊÇAD=AE»òCD=BE»ò¡ÏB=¡ÏC»ò¡ÏADB=¡ÏAEC£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÔÚRt¡÷ABCÖУ¬¡ÏB=90¡ã£¬AB=1£¬BC=2£¬µãE¡¢F·Ö±ðÔÚ±ßAB¡¢ACÉÏ£¬Á¬½ÓEF£¬½«¡÷AEFÑØEF·­ÕÛ£¬Ê¹AÂäÔÚBCÉϵÄD´¦£¬FD¡ÍBC£¬ÔòED=$\frac{5-\sqrt{5}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸