【题目】如图,抛物线的对称轴为直线,且抛物线经过,两点,与轴交于点.
(1)若直线经过、两点,求直线和抛物线的解析式;
(2)设点为抛物线上的一个动点,联结、,若是以为直角边的直角三角形,求此时点的坐标;
【答案】(1)的解析式:,抛物线解析式:;(2),
【解析】
(1)根据对称轴及A点坐标得出B点坐标,从而得出直线BC解析式,再由A、B、C三点坐标得出抛物线解析式;(2)分别过B、C两点作BC的垂线,得出垂线的解析式,与抛物线解析式联立解出P点.
解:(1)∵对称轴为x=2,且抛物线经过A(-1,0),
∴B(5,0).
把B(5,0),C(0,-5)分别代入y=mx+n得 ,
解得:,
∴直线BC的解析式为y=x-5.
设y=a(x-5)(x+1),把点C的坐标代入得:-5a=-5,解得:a=1,
∴抛物线的解析式为:y=x2-4x-5.
(2)①过点C作CP1⊥BC,交抛物线于点P1,如图,
则直线CP1的解析式为y=-x-5,由 ,
解得: (舍去);,
∴P1(3,-8);
②过点B作BP2⊥BC,交抛物线于P2,如图,
则BP2的解析式为y=-x+5,由,
解得:(舍去),,
∴P2(-2,7);
综上,,
科目:初中数学 来源: 题型:
【题目】在所给格点图中,画出△ABC作下列变换后的三角形,并写出所得到的三角形三个顶点的坐标.
(1)沿y轴正方向平移2个单位后得到△A1B1C1;
(2)关于y轴对称后得到△A2B2C2.
(3)以点B为位似中心,放大到2倍后得到△A3B3C3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图.在Rt△ABC中,∠ABC=90°,点D是斜边上的中点,点P在AB上,PE⊥BD于E,PF⊥AC于F,若AB=6,BC=3,则PE+PF=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】根据下列条件求关于x的二次函数的解析式
(1)图象经过(0,1)(1,0)(3,0)
(2)当x=1时,y=0; x=0时,y= -2,x=2 时,y=3
(3)抛物线顶点坐标为(-1,-2)且通过点(1,10)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABDC内接于⊙O,AB是⊙O的直径,OD⊥BC于点E.
(1)请你写出两个不相同的结论(不添加辅助线);
(2)连接AD,若BE=4,AC=6,求线段AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,⊙A与y轴相切于原点O,平行于x轴的直线交⊙A于M、M两点,若点M的坐标是(-4,-2),则点N的坐标为( )
A.(-1,-2) B.(1,2) C.(-1.5,-2) D.(1.5,-2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线 (a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:
①4ac<b2;
②方程 的两个根是x1=﹣1,x2=3;
③3a+c>0
④当y>0时,x的取值范围是﹣1≤x<3
⑤当x<0时,y随x增大而增大
其中结论正确的个数是( )
A. 4个 B. 3个 C. 2个 D. 1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O直径,CD为⊙O的切线,C为切点,过A作CD的垂线,垂足为D.
(1)求证:AC平分∠BAD;
(2)若⊙O半径为5,CD=4,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N,其顶点为D.
(1)求抛物线及直线AC的函数关系式;
(2)若P是抛物线上位于直线AC上方的一个动点,设点P的横坐标为t;
①当S△ACP=S△ACN时,求点P的坐标;
②是否存在点P,使得△ACP是以AC为斜边的直角三角形?若存在,求点P的坐标;若不存在,请说明理由;
(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,请直接写出点E的坐标;若不能,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com