精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)

(1)求此二次函数的解析式;

(2)在抛物线上存在一点P使ABP的面积为10,请直接写出点P的坐标.

【答案】(1)二次函数的解析式为y=x2+2x﹣3。

(2)P(﹣4,5)(2,5)。

【解析】

试题(1)根据曲线上点的坐标与方程的关系,把A(1,0),C(0,﹣3)代入)二次函数y=x2+bx+c中,求出b、c的值,即可得到函数解析式是y=x2+2x﹣3。

二次函数y=x2+bx+c过点A(1,0),C(0,﹣3),

,解得

二次函数的解析式为y=x2+2x﹣3。

(2)求出A、B两点坐标,得到AB的长,再设P(m,n),根据ABP的面积为10可以计算出n的值,然后再利用二次函数解析式计算出m的值即可得到P点坐标:

当y=0时,x2+2x﹣3=0,解得:x1=﹣3,x2=1。

A(1,0),B(﹣3,0)。AB=4。

设P(m,n),

∵△ABP的面积为10,AB|n|=10,解得:n=±5。

当n=5时,m2+2m﹣3=5,解得:m=﹣4或2。

P(﹣4,5)(2,5)。

当n=﹣5时,m2+2m﹣3=﹣5,方程无解。

P(﹣4,5)(2,5)。 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A篮球 B乒乓球C羽毛球 D足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:

(1)这次被调查的学生共有   人;

(2)请你将条形统计图(2)补充完整;

(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx+bx轴交于点A,与y轴于点B,点C(20)在线段OA上,且OCOA

1)求b的值;

2)点P是直线yx+b上一动点,连接PCPO,求PC+PO的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】苏果超市用5000元购进一批新品种的苹果进行试销,由于试销状况良好,超市又调拨11000元资金购进该种苹果,但这次的进价比试销时每千克多了0.5元,购进苹果的数量是试销时的2倍。

(1)试销时该品种苹果的进价是每千克多少元?

(2)如果超市将该品种的苹果按每千克7元定价出售,当大部分苹果售出后,余下的400千克按定价的七折售完,那么超市在这两次苹果销售中共盈利多少元?(7分)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形OABC的边长为4,顶点AC分别在x轴、y轴的正半轴上,抛物线y=-x2bxc经过点BC两点,点D为抛物线的顶点,连接ACBDCD.

(1)求此抛物线的解析式;

(2)求此抛物线顶点D的坐标和四边形ABDC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解方程:

用配方法

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中,∠ACB=90°BC=6AB=10.点Q与点BAC的同侧,且AQ⊥AC

1)如图1,点Q不与点A重合,连结CQAB于点P.设AQ=xAP=y,求y关于x的函数解析式,并写出自变量x的取值范围;

2)是否存在点Q,使△PAQ△ABC相似,若存在,求AQ的长;若不存在,请说明理由;

3)如图2,过点BBD⊥AQ,垂足为D.将以点Q为圆心,QD为半径的圆记为⊙Q.若点C⊙Q上点的距离的最小值为8,求⊙Q的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+ca≠0)的部分图象如图,图象过点(﹣10),对称轴为直线x=2,下列结论:

4a+b=09a+c3b8a+7b+2c0x﹣1时,y的值随x值的增大而增大;当函数值y<0时,自变量x的取值范围是x<-1x>5.

其中正确的结论有(  )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形网格中的每个小正方形的边长都是1,每个小格的顶点叫做格点.
(1)在图1中以格点为顶点画一个面积为10的正方形;
(2)在图2中以格点为顶点画一个三角形,使三角形三边长分别为2、
(3)如图3,点A、B、C是小正方形的顶点,求∠ABC的度数.

查看答案和解析>>

同步练习册答案