【题目】如图,在平面直角坐标系xOy中,直线y=2x+n与x轴、y轴分别交于点A、B,与双曲线y= 在第一象限内交于点C(1,m).
(1)求m和n的值;
(2)过x轴上的点D(3,0)作平行于y轴的直线l,分别与直线AB和双曲线y= 交于点P、Q,求△APQ的面积.
【答案】
(1)解:把C(1,m)代入y= 中得m= ,解得m=4,
∴C点坐标为(1,4),
把C(1,4)代入y=2x+n得4=2×1+n,解得n=2
(2)解:∵对于y=2x+2,令x=3,则y=2×3+2=8,
得到P点坐标为(3,8);
令y=0,则2x+2=0,则x=﹣1,
得到A点坐标为(﹣1,0),
对于y= ,令x=3,则y= ,
得到Q点坐标为(3, ),
∴△APQ的面积= ADPQ= ×(3+1)×(8﹣ )=
【解析】(1)先把C(1,m)代入y= 可求出m,确定C点坐标,然后把C点坐标代入直线y=2x+n可求得n的值;(2)先利用直线y=2x+2,令x=0和3,分别确定A点和P点坐标;再通过y= ,令x=3,确定Q点坐标,然后利用三角形面积公式计算即可.
科目:初中数学 来源: 题型:
【题目】小李用围棋子排成下列一组有规律的图案,其中第1个图案有1枚棋子,第2个图案有3枚棋子,第3个图案有4枚棋子,第4个图案有6枚棋子,…,那么第9个图案的棋子数是枚.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.
(1)当OC∥AB时,∠BOC的度数为;
(2)连接AC,BC,当点C在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值;
(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是( )
A.43
B.44
C.45
D.46
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘巡逻艇航行至海面B处时,得知正北方向上距B处20海里的C处有一渔船发生故障,就立即指挥港口A处的救援艇前往C处营救.已知C处位于A处的北偏东45°的方向上,港口A位于B的北偏西30°的方向上.求A、C之间的距离.(结果精确到0.1海里,参考数据 ≈1.41, ≈1.73)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为半圆O的直径,C为半圆O上一点,连接AC,BC,过点O作OD⊥AC于点D,过点A作半圆O的切线交OD的延长线于点E,连接BD并延长交AE于点F.
(1)求证:AEBC=ADAB;
(2)若半圆O的直径为10,sin∠BAC= ,求AF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com