精英家教网 > 初中数学 > 题目详情

【题目】大于1的正整数m的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…若m3分裂后,其中有一个奇数是2013,则m的值是( )
A.43
B.44
C.45
D.46

【答案】C
【解析】方法一:
解:∵23=3+5,33=7+9+11,43=13+15+17+19,

∴m3分裂后的第一个数是m(m﹣1)+1,共有m个奇数,
∵45×(45﹣1)+1=1981,46×(46﹣1)+1=2071,
∴奇数2013是底数为45的数的立方分裂后的一个奇数,
∴m=45.
故选:C.
方法二:
由观察可知,每行的第一个数及,每行的最后一个数呈二次函数,
即n=2,s=3;n=3,s=7;n=4,s=13,
n=2,s=5;n=3,s=11;n=4,s=19,
设s=an2+bn+c,


∴第一行满足的函数关系式:s=<2013<n2﹣n+1,


∴最后一行满足的函数关系式:s=n2+n﹣1,
∴n2﹣n+1<2013<n2+n﹣1,
取n=44代入函数式:s=n2+n﹣1,
∴s=1979,
若该数小于2013,则n>44,
若该数大于2013,则n≤44,
由题意可知,下一行的第一个数为1981,
∴2013位于第45行.
观察规律,分裂成的数都是奇数,且第一个数是底数乘以与底数相邻的前一个数的积再加上1,奇数的个数等于底数,然后找出2013所在的奇数的范围,即可得解.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,顶点为A( ,1)的抛物线经过坐标原点O,与x轴交于点B.

(1)求抛物线对应的二次函数的表达式;
(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;
(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为y1米,小亮与甲地的距离为y2米,小明与小亮之间的距离为s米,小明行走的时间为x分钟.y1、y2与x之间的函数图象如图1,s与x之间的函数图象(部分)如图2.
(1)求小亮从乙地到甲地过程中y2(米)与x(分钟)之间的函数关系式;
(2)求小亮从甲地返回到与小明相遇的过程中s(米)与x(分钟)之间的函数关系式;
(3)在图2中,补全整个过程中s(米)与x(分钟)之间的函数图象,并确定a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】边长为a的等边三角形,记为第1个等边三角形,取其各边的三等分点,顺次连接得到一个正六边形,记为第1个正六边形,取这个正六边形不相邻的三边中点,顺次连接又得到一个等边三角形,记为第2个等边三角形,取其各边的三等分点,顺次连接又得到一个正六边形,记为第2个正六边形(如图),…,按此方式依次操作,则第6个正六边形的边长为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线y=2x+n与x轴、y轴分别交于点A、B,与双曲线y= 在第一象限内交于点C(1,m).
(1)求m和n的值;
(2)过x轴上的点D(3,0)作平行于y轴的直线l,分别与直线AB和双曲线y= 交于点P、Q,求△APQ的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】扬州市中小学全面开展“体艺2+1”活动,某校根据学校实际,决定开设A:篮球,B:乒乓球,C:声乐,D:健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:
(1)这次被调查的学生共有人.
(2)请你将统计图1补充完整.
(3)统计图2中D项目对应的扇形的圆心角是度.
(4)已知该校学生2400人,请根据调查结果估计该校最喜欢乒乓球的学生人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,已知AB∥DC,AB=DC.在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上的一个条件是 . (填上你认为正确的一个答案即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数y1=kx+b的图象与反比例函数y2= 的图象交于点A(﹣4,m),且与y轴交于点B,第一象限内点C在反比例函数y2= 的图象上,且以点C为圆心的圆与x轴,y轴分别相切于点D,B

(1)求m的值;
(2)求一次函数的表达式;
(3)根据图象,当y1<y2<0时,写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是(  )

A.3
B.4
C.5.5
D.10

查看答案和解析>>

同步练习册答案