精英家教网 > 初中数学 > 题目详情

【题目】RtABC中,∠ACB=90°AC=8BC=6,点DE分别在ACAB上,且ADE是直角三角形,BDE是等腰三角形,则BE=_________.

【答案】

【解析】

分两种情形:①如图1中,当∠AED=90°DE=BE时.②如图2中,当∠ADE=90°DE=EB时.利用相似三角形的性质,构建方程即可解决问题

①如图1中,当∠AED=90°DE=BE时,设DE=BE=x

RtABC中,∵AC=8BC=6

AB==10

∵∠A=A,∠AED=C=90°

∴△AED∽△ACB

解得x=

②如图2中,当∠ADE=90°DE=EB时,设DE=BE=x

∵△ADE∽△ACB

解得x=

综上所述,BE的值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,C是以AB为直径的半圆O上一点,连结ACBC,分别以ACBC为边向外作正方形ACDEBCFGDEFG, 的中点分别是MNPQ.若MP+NQ14AC+BC20,则AB的长是(  )

A. 9B. C. 13D. 16

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+cx轴分别交于A(﹣10),B50)两点.

1)求抛物线的解析式;

2)在第二象限内取一点C,作CD垂直x轴于点D,连接AC,且AD5CD8,将RtACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)问题发现

如图1,在OABOCD中,OA=OB,OC=OD,AOB=COD=40°,连接AC,BD交于点M.填空:

的值为   

②∠AMB的度数为   

(2)类比探究

如图2,在OABOCD中,∠AOB=COD=90°,OAB=OCD=30°,连接ACBD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;

(3)拓展延伸

在(2)的条件下,将OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.

【答案】(1)1;40°;(2),90°;(3)AC的长为32

【解析】

(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;

②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°;

(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则,由全等三角形的性质得∠AMB的度数;

(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC∽△BOD,则∠AMB=90°,,可得AC的长.

(1)问题发现:

①如图1,

∵∠AOB=∠COD=40°,

∴∠COA=∠DOB,

∵OC=OD,OA=OB,

∴△COA≌△DOB(SAS),

∴AC=BD,

②∵△COA≌△DOB,

∴∠CAO=∠DBO,

∵∠AOB=40°,

∴∠OAB+∠ABO=140°,

在△AMB中,∠AMB=180°-(∠CAO+∠OAB+∠ABD)=180°-(∠DBO+∠OAB+∠ABD)=180°-140°=40°,

(2)类比探究:

如图2,,∠AMB=90°,理由是:

Rt△COD中,∠DCO=30°,∠DOC=90°,

同理得:

∵∠AOB=∠COD=90°,

∴∠AOC=∠BOD,

∴△AOC∽△BOD,

,∠CAO=∠DBO,

在△AMB中,∠AMB=180°-(∠MAB+∠ABM)=180°-(∠OAB+∠ABM+∠DBO)=90°;

(3)拓展延伸:

①点C与点M重合时,如图3,

同理得:△AOC∽△BOD,

∴∠AMB=90°,

设BD=x,则AC=x,

Rt△COD中,∠OCD=30°,OD=1,

∴CD=2,BC=x-2,

Rt△AOB中,∠OAB=30°,OB=

∴AB=2OB=2

在Rt△AMB中,由勾股定理得:AC2+BC2=AB2

(x)2+(x2)2=(2)2

x2-x-6=0,

(x-3)(x+2)=0,

x1=3,x2=-2,

∴AC=3

②点C与点M重合时,如图4,

同理得:∠AMB=90°,

设BD=x,则AC=x,

在Rt△AMB中,由勾股定理得:AC2+BC2=AB2

(x)2+(x+2)2=(2)2.

x2+x-6=0,

(x+3)(x-2)=0,

x1=-3,x2=2,

∴AC=2;.

综上所述,AC的长为3或2

点睛:本题是三角形的综合题,主要考查了三角形全等和相似的性质和判定,几何变换问题,解题的关键是能得出:△AOC∽△BOD,根据相似三角形的性质,并运用类比的思想解决问题,本题是一道比较好的题目.

型】解答
束】
25

【题目】如图,已知抛物线yax2+bx3a≠0)经过点A30),B(﹣10).

1)求该抛物线的解析式;

2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;

3)若点Qx轴上,点P在抛物线上,是否存在以点BCQP为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一次函数y=kx﹣1的图象经过点P,且y的值随x值的增大而增大,则点P的坐标可以为(  )

A. (﹣5,3) B. (1,﹣3) C. (2,2) D. (5,﹣1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的顶点A11),B31),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为(  )

A. (﹣20183B. (﹣2018,﹣3

C. (﹣20163D. (﹣2016,﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OAOB⊙O的两条半径,OAOBC是半径OB上一动点,连接AC并延长交⊙OD,过点D作圆的切线交OB的延长线于E,已知OA6

1)求证:∠ECD=∠EDC

2)若BC2OC,求DE长;

3)当∠A15°增大到30°的过程中,求弦AD在圆内扫过的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本题满分8分)

为了加强学生课外阅读,开阔视野,某校开展了书香校园,从我做起的主题活动.学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:

请根据图表信息回答下列问题:

(1)频数分布表中的

(2)将频数分布直方图补充完整;

(3)学校将每周课外阅读时间在小时以上的学生评为阅读之星,请你估计该校名学生中评为阅读之星的有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班6个合作小组的人数分别是464578,现第4小组调出1人去第2小组,则新各组人数分别为:474478,下列关于调配后的数据说法正确的是(  )

A. 调配后平均数变小了B. 调配后众数变小了

C. 调配后中位数变大了D. 调配后方差变大了

查看答案和解析>>

同步练习册答案