精英家教网 > 初中数学 > 题目详情

【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

从上表可知,有下列说法:
①抛物线与y轴的交点为(0,6);
②抛物线的对称轴是x=1;
③抛物线与x轴有两个交点,它们之间的距离是
④在对称轴左侧y随x增大而增大.
其中正确的说法是(
A.①②③
B.②③④
C.②③
D.①④

【答案】D
【解析】解:∵抛物线过点(﹣2,0)和(0,6),则 ,解得
∴抛物线的解析式为y=﹣x2+x+6,
∴抛物线与y轴的交点为(0,6),故①正确;
抛物线的对称是:直线x=﹣ = ,故②错误;
抛物线与x轴的两个交点为(﹣2,0),(3,0),它们之间的距离是5,故③错误;
抛物线开口向下,则在对称轴左侧,y随x的增大而增大,故④正确.
正确答案为①④.
故选:D.
【考点精析】解答此题的关键在于理解二次函数的性质的相关知识,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.

(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
(4)连接AC,H是抛物线上一动点,过点H作AC的平行线交x轴于点F.是否存在这样的点F,使得以A,C,H,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y= 的图象上.若点B在反比例函数y= 的图象上,则k的值为(

A.﹣4
B.4
C.﹣2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级(3)班共有学生54人,学习委员调查了班级学生参加课外活动的情况(每人只参加一项活动),其中:参加读书活动的18人,参加科技活动的人数占全班总人数的,参加艺术活动的比参加科技活动的多3人,所调查班级同学参加体育活动情况如图所示,则在扇形图中表示参加体育活动人数的扇形的圆心角大小为(  )

A. 100° B. 110°

C. 120° D. 130°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解本校九年级学生期末数学考试情况,小亮在九年级随机抽取了一部分学生的期末数学成绩为样本,分为A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:

(1)这次随机抽取的学生共有多少人?

(2)请补全条形统计图;

(3)这个学校九年级共有学生1200人,若分数为80分(含80分)以上为优秀,请估计这次九年级学生期末数学考试成绩为优秀的学生人数大约有多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小强掷两枚质地均匀的骰子,每个骰子的六个面上分别刻有1到6的点数,则两枚骰子点数相同的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知E是正方形ABCD的边CD的中点,点FBC上,且∠DAE=FAE,

求证:AF=AD+CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1:在四边形ABCD中,ABADBAD120°BADC90°EF分别是BCCD上的点.且∠EAF60°.探究图中线段BEEFFD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G,使DGBE.连结AG先证明ABE≌△ADG,再证明AEF≌△AGF,可得出结论,他的结论应是   

探索延伸:

如图2,若在四边形ABCD中,ABADBD180°EF分别是BCCD上的点,且∠EAFBAD,上述结论是否仍然成立,并说明理由;

实际应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°A处,舰艇乙在指挥中心南偏东70°B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达EF处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:
(1)线段BE的长;
(2)∠ECB的余切值.

查看答案和解析>>

同步练习册答案