精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.

(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
(4)连接AC,H是抛物线上一动点,过点H作AC的平行线交x轴于点F.是否存在这样的点F,使得以A,C,H,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点F的坐标;若不存在,请说明理由.

【答案】
(1)

解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),

∴OB=3,

∵OC=OB,

∴OC=3,

∴c=3,C(0,3),

将A(1,0)、B(﹣3,0)代入y=ax2+bx+3中,

得: ,解得:

∴所求抛物线解析式为:y=﹣x2﹣2x+3.


(2)

解:如图1,过点E作EF⊥x轴于点F,

设E(m,﹣m2﹣2m+3)(﹣3<m<0),

∴EF=﹣m2﹣2m+3,BF=m+3,OF=﹣m,

∴S四边形BOCE= BFEF+ (OC+EF)OF,

= (m+3)(﹣m2﹣2m+3)+ (﹣m2﹣2m+3+3)(﹣a),

=﹣ m2 m+

=﹣ +

∵a=﹣ <0,

∴当m=﹣ 时,S四边形BOCE最大,且最大值为

此时点E的坐标为(﹣ ).


(3)

解:设点P的坐标为(﹣1,n),如图2,过A1作A1N⊥对称轴于N,设对称轴与x轴交于点M.

①当n>0时,∵∠NP1A1+∠MP1A=∠NA1P1+∠NP1A1=90°,

∴∠NA1P1=∠MP1A,

在△A1NP1与△P1MA中,

∴△A1NP1≌△P1MA(AAS),

∴A1N=P1M=n,P1N=AM=2,

∴A1(n﹣1,n+2),

将A1(n﹣1,n+2)代入y=﹣x2﹣2x+3得:n+2=﹣(x﹣1)2﹣2(n﹣1)+3,

解得:n=1,n=﹣2(舍去),

此时P1(﹣1,1);

②当n<0时,要使P2A=P2A2,由图可知A2点与B点重合,

∵∠AP2A2=90°,

∴MP2=MA=2,

∴P2(﹣1,﹣2),

∴满足条件的点P的坐标为P(﹣1,1)或(﹣1,﹣2).


(4)

解:假设存在,设点F的坐标为(t,0),

以A,C,H,F为顶点的平行四边形分两种情况(如图3):

①当点H在x轴上方时,

∵A(1,0),C(0,3),F(t,0),

∴H(t﹣1,3),

∵点H在抛物线y=﹣x2﹣2x+3上,

∴3=﹣(t﹣1)2﹣2(t﹣1)+3,

解得:t1=﹣1,t2=1(舍去),

此时F(﹣1,0);

②当点H在x轴下方时,

∵A(1,0),C(0,3),F(t,0),

∴H(t+1,﹣3),

∵点H在抛物线y=﹣x2﹣2x+3上,

∴﹣3=﹣1(t+1)2﹣2(t+1)+3,

解得:t3=﹣2﹣ ,t4=﹣2+

此时F(﹣2﹣ ,0)或(﹣2+ ,0).

综上可知:存在这样的点F,使得以A,C,H,F为顶点所组成的四边形是平行四边形,点F的坐标为(﹣1,0)、(﹣2﹣ ,0)或(﹣2+ ,0).


【解析】(1)由点B的坐标可知OB的长,根据OC=OB,即可得出点C的坐标以及c,再根据点A、B的坐标利用待定系数法即可求出二次函数解析式;(2)过点E作EF⊥x轴于点F,设E(m,﹣m2﹣2m+3)(﹣3<m<0),结合B、O、C点的坐标即可得出BF、OF、OC、EF的长,利用分割图形求面积法即可找出S四边形BOCE关于m的函数关系式,利用配方法以及二次函数的性质即可解决最值问题;(3)设点P的坐标为(﹣1,n),过A1作A1N⊥对称轴于N,设对称轴与x轴交于点M.分n>0和n<0考虑:①当n>0时,利用相等的边角关系即可证出△A1NP1≌△P1MA(AAS),由此即可得出点A1的坐标,将其代入二次函数解析式中即可求出n值,由此即可得出点P1的坐标;②当n<0时,结合图形找出点A2的位置,由此即可得出点P2的坐标.综上即可得出结论;(4)假设存在,设点F的坐标为(t,0),分点H在x轴上方和下方两种情况考虑,根据平行四边形的性质结合A、C、F点的坐标即可表示出点H的坐标,将其代入二次函数解析式中即可求出t值,从而得出点F的坐标.
【考点精析】利用二次函数的图象对题目进行判断即可得到答案,需要熟知二次函数图像关键点:1、开口方向2、对称轴 3、顶点 4、与x轴交点 5、与y轴交点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,BC=8,AC=6,将△ABC沿AE折叠 使点C恰好落在AB边上的点F.BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,将正方形的边AD绕点A顺时针旋转到AE,连接BE、DE,过点A作AF⊥BE于F,交直线DE于P.

(1)如图①,若∠DAE=40°,求∠P的度数;
(2)如图②,若90°<∠DAE<180°,其它条件不变,试探究线段AP、DP、EP之间的数量关系,并说明理由;
(3)继续旋转线段AD,若旋转角180°<∠DAE<270°,则线段AP、DP、EP之间的数量关系为(直接写出结果)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:

(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务,小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数关系如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间的函数关系如图②所示

(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是元,小张应得的工资总额是元,此时,小李种植水果亩,小李应得的报酬是元;
(2)设农庄支付给小张和小李的总费用为W(元),当10<m<30时,求W与m之间的函数关系式,并求出总费用最大为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BDABC的外角ABP的角平分线,DADCDEBP于点E,若AB=5,BC=3,则BE的长为 _____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图,在在△ABC中,已知∠BAC=900,AB=AC,DBC上,且BD=BA,点EBC的延长线上,CE=CA,求∠DAE的度数;

(2)如果把(1)中的“AB=AC”条件去掉,其余条件不变,那么∠DAE的度数改变吗?为什么?

(3)如果把(1)中的“∠BAC=900”改成“∠BAC>900其余条件不变,试探究∠DAE∠BAC的数量关系式,试证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小强的钱包内有10元钱、20元钱和50元钱的纸币各1张.
(1)若从中随机取出1张纸币,求取出纸币的金额是20元的概率;
(2)若从中随机取出2张纸币,求取出纸币的总额可购买一件51元的商品的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

从上表可知,有下列说法:
①抛物线与y轴的交点为(0,6);
②抛物线的对称轴是x=1;
③抛物线与x轴有两个交点,它们之间的距离是
④在对称轴左侧y随x增大而增大.
其中正确的说法是(
A.①②③
B.②③④
C.②③
D.①④

查看答案和解析>>

同步练习册答案