精英家教网 > 初中数学 > 题目详情

【题目】(1)如图,在在△ABC中,已知∠BAC=900,AB=AC,DBC上,且BD=BA,点EBC的延长线上,CE=CA,求∠DAE的度数;

(2)如果把(1)中的“AB=AC”条件去掉,其余条件不变,那么∠DAE的度数改变吗?为什么?

(3)如果把(1)中的“∠BAC=900”改成“∠BAC>900其余条件不变,试探究∠DAE∠BAC的数量关系式,试证明.

【答案】(1)450;(2)不改变;(3)∠DAE=∠BAC.

【解析】

(1)要求∠DAE,必先求∠BAD和∠CAE,由∠BAC=90°,AB=AC,可求∠B=ACB=45°,又因为BD=BA,可求∠BAD=BDA=67.5°,再由CE=CA,可求∠CAE=E=22.5°,所以∠DAE=BAE-BAD=112.5°-67.5°=45°;
(2)先设∠CAE=x,由已知CA=CE可求∠ACB=CAE+E=2x,B=90°-2x,又因为BD=BA,所以∠BAD=BDA=x+45°,再根据三角形的内角和是180°,可求∠BAE=90°+x,即∠DAE=BAE-BAD=(90°+x)-(x+45°)=45度;
(3)可设∠CAE=x,BAD=y,则∠B=180°-2y,E=CAE=x,所以∠BAE=180°-B-E=2y-x,BAC=BAE-CAE=2y-x-x=2y-2x,即∠DAE=BAC.

(1)AB=AC,BAC=

∴∠B=ACB=

BD=BA,

∴∠BAD=BDA=(180B)=

CE=CA,

∴∠CAE=E=ACB=

ABE,BAE=180BE=

∴∠DAE=BAEBAD==

(2)不改变.

设∠CAE=x,

CA=CE,

∴∠E=CAE=x,

∴∠ACB=CAE+E=2x,

ABC,BAC=

∴∠B=ACB=2x,

BD=BA,

∴∠BAD=BDA= (180B)=x+

ABE,BAE=BE,=(2x)x=+x,

∴∠DAE=BAEBAD,=(+x)(x+)=

(3)DAE=BAC.

理由:设∠CAE=x,BAD=y,

则∠B=2y,E=CAE=x,

∴∠BAE=BE=2yx,

∴∠DAE=BAEBAD=2yxy=yx,

BAC=BAECAE=2yxx=2y2x,

∴∠DAE=BAC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,△ABC与点O在10×10的网格中的位置如图所示

(1)画出△ABC绕点O逆时针旋转90°后的图形;
(2)画出△ABC绕点O逆时针旋转180°后的图形;
(3)若⊙M能盖住△ABC,则⊙M的半径最小值为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算

1)= ; (2)= ; (3)

(4) ; (5) ; (6)a3·a3

(7) (x3)5 ; (8)(-2x2y3)3 ; (9) (x-y)6÷(x-y)3

(10)a2b(ab-4b2) (11)(2a-3b)(2a+5b)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.

(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
(4)连接AC,H是抛物线上一动点,过点H作AC的平行线交x轴于点F.是否存在这样的点F,使得以A,C,H,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点F的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DE⊥ABE,DF⊥ACF,若BD=CD、BE=CF,

(1)求证:AD平分∠BAC;

(2)已知AC=20,AB=12,求CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB的垂直平分线EFBC于点E,交AB于点F,D为线段CE的中点,BE=AC.

(1)求证:AD⊥BC.

(2)若∠BAC=75°,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=16cm,AD=6cm,动点P、Q分别从A、C两点同时出发,点P以3cm/s的速度向点B移动,一直到达点B为止,点Q以2cm/s的速度向点D移动.

(1)P、Q两点从出发开始,经过几秒时,四边形PBCQ的面积为33cm2
(2)P、Q两点从出发开始,经过几秒时,点P和点Q的距离为10cm?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y= 的图象上.若点B在反比例函数y= 的图象上,则k的值为(

A.﹣4
B.4
C.﹣2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知E是正方形ABCD的边CD的中点,点FBC上,且∠DAE=FAE,

求证:AF=AD+CF.

查看答案和解析>>

同步练习册答案