精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB的垂直平分线EFBC于点E,交AB于点F,D为线段CE的中点,BE=AC.

(1)求证:AD⊥BC.

(2)若∠BAC=75°,求∠B的度数.

【答案】(1)详见解析,(2)35°.

【解析】

(1)连接AE,根据垂直平分线的性质,可知BE=AE=AC,根据等腰三角形三线合一即可知ADBC
(2)设∠B=x°,由(1)可知∠BAE=B=x°,然后根据三角形ABC的内角和为180°列出方程即可求出x的值.

(1)连接AE,

EF垂直平分AB,

AE=BE,

BE=AC,

AE=AC,

DEC的中点,

ADBC;

(2)设∠B=x°,

AE=BE,

∴∠BAE=B=x°,

∴由三角形的外角的性质,AEC=2x°,

AE=AC,

∴∠C=AEC=2x°,

在三角形ABC,3x°+75°=180°,

x°=35°,

∴∠B=35°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABCACD都是边长为2厘米的等边三角形,两个动点P,Q同时从A点出发,点P0.5厘米/秒的速度沿A→C→B的方向运动,点Q1厘米/秒的速度沿A→B→C→D的方向运动,当点Q运动到D点时,P、Q两点同时停止运动。设P、Q运动的时间为t

(1)t=2时,PQ=___;

(2)求点P、Q从出发到相遇所用的时间;

(3)t取何值时,APQ是等边三角形;请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校开展了“互助、平等、感恩、和谐、进取”主题班会活动,活动后,就活动的5个主题进行了抽样调查(每位同学只选最关注的一个),根据调查结果绘制了两幅不完整的统计图.根据图中提供的信息,解答下列问题:

(1)这次调查的学生共有多少名?
(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数.
(3)如果要在这5个主题中任选两个进行调查,根据(2)中调查结果,用树状图或列表法,求恰好选到学生关注最多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,BDABC的外角ABP的角平分线,DADCDEBP于点E,若AB=5,BC=3,则BE的长为 _____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图,在在△ABC中,已知∠BAC=900,AB=AC,DBC上,且BD=BA,点EBC的延长线上,CE=CA,求∠DAE的度数;

(2)如果把(1)中的“AB=AC”条件去掉,其余条件不变,那么∠DAE的度数改变吗?为什么?

(3)如果把(1)中的“∠BAC=900”改成“∠BAC>900其余条件不变,试探究∠DAE∠BAC的数量关系式,试证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解下列方程
(1)(x﹣1)2=4
(2)x2=3x
(3)2x2﹣x﹣1=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小强的钱包内有10元钱、20元钱和50元钱的纸币各1张.
(1)若从中随机取出1张纸币,求取出纸币的金额是20元的概率;
(2)若从中随机取出2张纸币,求取出纸币的总额可购买一件51元的商品的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=k1x+b(k1≠0)与反比例函数的图象交于点A(-12)B(m-1)

(1)求一次函数与反比例函数的解析式;

(2)x轴上是否存在点P(n0),使△ABP为等腰三角形,请你直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图点P是AB上任一点ABC=ABD从下列各条件中补充一个条件不一定能推出ΔAPC≌ΔAPD的是( )

A.BC=BD BACB=ADB CAC=AD DCAB=DAB

查看答案和解析>>

同步练习册答案