精英家教网 > 初中数学 > 题目详情

【题目】如图点P是AB上任一点ABC=ABD从下列各条件中补充一个条件不一定能推出ΔAPC≌ΔAPD的是( )

A.BC=BD BACB=ADB CAC=AD DCAB=DAB

【答案】C

【解析】

试题分析:选项A补充BC=BD利用SAS先证出ABC≌△ABD可得CAB=DABAC=AD利用SAS即可得APC≌△APD选项A正确;选项B补充ACB=ADB利用AAS先证出ABC≌△ABD可得CAB=DABAC=AD利用SAS即可得APC≌△APD选项B正确;选项C补充AC=AD不能推出APC≌△APD选项C错误;选项D补充CAB=DAB利用ASA先证出ABC≌△ABD可得AC=AD利用SAS即可得APC≌△APD选项D正确故答案选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB的垂直平分线EFBC于点E,交AB于点F,D为线段CE的中点,BE=AC.

(1)求证:AD⊥BC.

(2)若∠BAC=75°,求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】八年级(3)班共有学生54人,学习委员调查了班级学生参加课外活动的情况(每人只参加一项活动),其中:参加读书活动的18人,参加科技活动的人数占全班总人数的,参加艺术活动的比参加科技活动的多3人,所调查班级同学参加体育活动情况如图所示,则在扇形图中表示参加体育活动人数的扇形的圆心角大小为(  )

A. 100° B. 110°

C. 120° D. 130°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小强掷两枚质地均匀的骰子,每个骰子的六个面上分别刻有1到6的点数,则两枚骰子点数相同的概率为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知E是正方形ABCD的边CD的中点,点FBC上,且∠DAE=FAE,

求证:AF=AD+CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=4cm,AC=BD=3cm.CAB=DBA=60°,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s),则点Q的运动速度为 cm/s,使得A、C、P三点构成的三角形与B、P、Q三点构成的三角形全等.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1:在四边形ABCD中,ABADBAD120°BADC90°EF分别是BCCD上的点.且∠EAF60°.探究图中线段BEEFFD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G,使DGBE.连结AG先证明ABE≌△ADG,再证明AEF≌△AGF,可得出结论,他的结论应是   

探索延伸:

如图2,若在四边形ABCD中,ABADBD180°EF分别是BCCD上的点,且∠EAFBAD,上述结论是否仍然成立,并说明理由;

实际应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°A处,舰艇乙在指挥中心南偏东70°B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达EF处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】根据题意解答
(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得线段BE、EF、FD之间的数量关系为

(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF= ∠BAD,线段BE、EF、FD之间存在什么数量关系,为什么?

(3)如图3,点A在点O的北偏西30°处,点B在点O的南偏东70°处,且AO=BO,点A沿正东方向移动249米到达E处,点B沿北偏东50°方向移动334米到达点F处,从点O观测到E、F之间的夹角为70°,根据(2)的结论求E、F之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九年级三班学生苏琪为帮助同桌万宇巩固“平面直角坐标系四个象限内及坐标轴上的点的坐标特点”这一基础知识,在三张完全相同且不透明的卡片正面分别写上了﹣3,0,2三个数字,背面向上洗匀后随机抽取一张,将卡片上的数字记为a,再从剩下的两张中随机取出一张,将卡片上的数字记为b,然后叫万宇在平面直角坐标系中找出点M(a,b)的位置.
(1)请你用树状图帮万宇同学进行分析,并写出点M所有可能的坐标;
(2)求点M在第二象限的概率;
(3)张老师在万宇同学所画的平面直角坐标系中,画了一个半径为3的⊙O,过点M能作多少条⊙O的切线?请直接写出答案.

查看答案和解析>>

同步练习册答案