精英家教网 > 初中数学 > 题目详情

【题目】一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,∠BCD=150°,∠ABC的度数.

【答案】120°.

【解析】

首先过点BBFCD,由CDAE,可得CDBFAE,继而证得∠1+BCD=180°,2+BAE=180°,又由BA垂直于地面AEABCD=150°,求得答案.

如图,过点B BGAE.

CDAE

BGCD

∴∠GBCBCD =180°.又∠BCD= 150°,

∴∠GBC=180°-BCD=180o -150°=30°.

BAAE∴∠BAE = 90°.

BGAE

∴∠GBABAE =180°,

∴∠GBA=180°-BAE =90°.

∴∠ABCGBAGBC=90°+30°=120°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知E、F分别是ABCD的边BC、AD上的点,且BE=DF.

(1)求证:四边形AECF是平行四边形;

(2)若BAC=90°,AC平分EAF,且BC=8cm,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 1,在五边形 ABCDE 中,∠E=90°,BC=DE.连接 ACAD, 且 AB=ADACBC.

1)求证:AC=AE

2)如图 2,若∠ABC=CADAF BE 边上的中线,求证:AFCD

3)如图 3,在(2)的条件下,AE=6DE=4,则五边形 ABCDE 的面积为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC 中,AB=AC,∠CAB=50°.在△ABC 的外侧作直线 AP,作 点 C 关于直线 AP 的对称点 D,连接 BD,CD,AD,其中 BD 交直线 AP 于点 E.

(1)如图 1,与 AD 相等的线段是_____

(2)如图 2,若∠PAC=20°,求∠BDC 的度数;

(3)如图 3,当 65°<∠PAC<130°时,作 AF⊥CE 于点 F,若 EF=1,BE=5,求 DE 的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在以AB为直径的半圆上,AB=4 ,AC=4,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE,DF交EC的延长线于点F,当点D从点A运动到点B时,线段EF扫过的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】快走是大众常用的健身方式,手机中的“乐动力”可以计算行走的步数与消耗的相应能量,对比数据发现小明步行1200步与小红步行9000步消耗的能量相同,若每消耗1千卡能量小明行走的步数比小红多2步,求小红每消耗1千卡能量可以行走多少步?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,添加以下条件,不能判定的是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC沿BC边上的中线AD平移到A'B'C'的位置,已知ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于(  )

A. 2 B. 3 C. D.

查看答案和解析>>

同步练习册答案