精英家教网 > 初中数学 > 题目详情

【题目】在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为

【答案】7
【解析】解:作AB的中点E,连接EM、CE.
在直角△ABC中,AB= = =10,
∵E是直角△ABC斜边AB上的中点,
∴CE= AB=5.
∵M是BD的中点,E是AB的中点,
∴ME= AD=2.
∴在△CEM中,5﹣2≤CM≤5+2,即2≤CM≤7.
∴最大值为7,
所以答案是:7.
【考点精析】利用直角三角形斜边上的中线和三角形中位线定理对题目进行判断即可得到答案,需要熟知直角三角形斜边上的中线等于斜边的一半;连接三角形两边中点的线段叫做三角形的中位线;三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某工厂计划生产AB两种产品共10件,其生产成本和利润如下表:


A种产品

B种产品

成本(万元/件)

2

5

利润(万元/件)

1

3

1)若工厂计划获利14万元,问AB两种产品应分别生产多少件?

2)若工厂计划投入资金不多于44万元,且获利多于14万元,问工厂有哪几种生产方案?

3)在(2)的条件下,哪种生产方案获利最大?并求出最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,D为边BC上一点,以AB、BD为邻边作ABDE,连接AD、EC.
(1)试说明:△ADC≌△ECD;
(2)若BD=CD,试说明:四边形ADCE是矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段,

探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20cm,它们的面积的差为40cm2,则这两个正方形的边长差为

探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为xm,宽为ym,

(1)用含x、y的代数式表示正方形的边长为

(2)设长方形的长大于宽,比较正方形与长方形面积哪个大,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD 相交于点O,∠AOD=3BOD+20°.

(1)求∠BOD的度数;

(2)O为端点引射线OE,OF ,射线OE平分∠BOD,且∠EOF= 90°,求∠BOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠CAB=DAB下列条件中不能使△ABC≌△ABD的是( )

A. C=D B. ABC=ABD C. AC=AD D. BC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知OA⊥OB,∠AOD=∠BOC由此判定OC⊥OD,下面是推理过程,请填空.

解:∵OA⊥OB(已知)

所以_____=90°________

因为_____=∠AOD-∠AOC,____=∠BOC-∠AOC,∠AOD=∠BOC,

所以______=_____(等量代换)

所以______=90°

所以OC⊥OD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一大门栏杆的平面示意图如图所示,BA垂直地面AE于点A,CD平行于地面AE,∠BCD=150°,∠ABC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小红玩抽卡片和旋转盘游戏,有两张正面分别标有数字1,﹣2的不透明卡片,背面完全相同;转盘被平均分成3个相等的扇形,并分别标有数字﹣1,3,4(如图所示),小云把卡片背面朝上洗匀后从中随机抽出一张,记下卡片上的数字;然后转动转盘,转盘停止后,记下指针所在区域的数字(若指针在分格线上,则重转一次,直到指针指向某一区域为止).请用列表或树状图的方法(只选其中一种)求出两个数字之积为负数的概率.

查看答案和解析>>

同步练习册答案