精英家教网 > 初中数学 > 题目详情

【题目】如图,∠CAB=DAB下列条件中不能使△ABC≌△ABD的是( )

A. C=D B. ABC=ABD C. AC=AD D. BC=BD

【答案】D

【解析】

根据题目中的已知条件AB=AB, CAB=DAB,再结合题目中所给选项中的条件, 利用全等三角形的判定定理进行分析即可.

有条件AB=AB, CAB=DAB ,

A. 再加上∠C=D 可利用 AAS可证明 ABC≌△ABD , 故此选项不合题意;

B. 再加上条件∠ABC=ABD可利用AAS可证明△ABC≌△ABD, 故此选项不合题意;

C. 再加上条件AC=AD 可利用SAS可证明△ABC≌△ABD, 故此选项不符合题意;

D.再加上条件BC=BD 不能证明△ABC≌△ABD , 故此选项合题意;

故选:D.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,从①∠1=∠2;②∠C=∠D;③∠A=∠F三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学活动课上,某学习小组对有一内角(∠BAD)为120°的平行四边形ABCD,将一块含60°的直角三角板如图放置在平行四边形ABCD所在平面内旋转,且60°角的顶点始终与点C重合,较短的直角边和斜边所在的两直线分别交线段AB,AD于点E,F(不包括线段的端点).
(1)初步尝试
如图1,若AD=AB,求证:①△BCE≌△ACF,②AE+AF=AC;
(2)类比发现
如图2,若AD=2AB,过点C作CH⊥AD于点H,求证:AE=2FH;
(3)深入探究:在(2)的条件下,学习小组某成员探究发现AE+2AF= AC,试判断结论是否正确,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交 于点E,以点O为圆心,OC的长为半径作 交OB于点D.若OA=2,则阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是以点A为圆心4为半径的圆上一点,连接BD,点M为BD中点,线段CM长度的最大值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在 RtABC 中,∠ACB=90°BC=5,点 P 在边 AB 上,连接 CP.将△BCP 沿直线CP 翻折后,点 B 恰好落在边 AC 的中点处,则点 P AC 的距离是( )

A. 2.5 B. C. 3.5 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 1,在五边形 ABCDE 中,∠E=90°,BC=DE.连接 ACAD, 且 AB=ADACBC.

1)求证:AC=AE

2)如图 2,若∠ABC=CADAF BE 边上的中线,求证:AFCD

3)如图 3,在(2)的条件下,AE=6DE=4,则五边形 ABCDE 的面积为_____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在以AB为直径的半圆上,AB=4 ,AC=4,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE,DF交EC的延长线于点F,当点D从点A运动到点B时,线段EF扫过的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】A、B、C为数轴上的三点,动点A、B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点C对应的数为8.

(1)若2秒后,a、b满足|a+8|+(b﹣2)2=0,则x=   ,y=   ,并请在数轴上标出A、B两点的位置.

(2)若动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得|a|=|b|,使得z=   

(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC=1.5AB,则t=   

查看答案和解析>>

同步练习册答案