精英家教网 > 初中数学 > 题目详情

【题目】如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA交 于点E,以点O为圆心,OC的长为半径作 交OB于点D.若OA=2,则阴影部分的面积为

【答案】 +
【解析】解:连接OE、AE,
∵点C为OA的中点,
∴∠CEO=30°,∠EOC=60°,
∴△AEO为等边三角形,
∴S扇形AOE= = π,
∴S阴影=S扇形AOB﹣S扇形COD﹣(S扇形AOE﹣SCOE
= ﹣( π﹣ ×1×
= π﹣ π+
= +
故答案为: +
连接OE、AE,根据点C为OC的中点可得∠CEO=30°,继而可得△AEO为等边三角形,求出扇形AOE的面积,最后用扇形AOB的面积减去扇形COD的面积,再减去S空白AEC即可求出阴影部分的面积.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:c=10,且a,b满足(a+26)2+|b+c|=0,请回答问题:

(1)请直接写出a,b,c的值:a=   ,b=   

(2)在数轴上a、b、c所对应的点分别为A、B、C,记A、B两点间的距离为AB,则AB=   ,AC=   

(3)在(1)(2)的条件下,若点M从点A出发,以每秒1个单位长度的速度向右运动,当点M到达点C时,点M停止;当点M运动到点B时,点N从点A出发,以每秒3个单位长度向右运动,点N到达点C后,再立即以同样的速度返回,当点N到达点A时,点N停止.从点M开始运动时起,至点M、N均停止运动为止,设时间为t秒,请用含t的代数式表示M,N两点间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)

(2)

(3)先化简,再求值,其中互为相反数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图的数阵是由88个偶数组成:

(1)观察数阵中平行四边形框内的四个数之间的关系,在数阵中任意作一个相同的平行四边形框圈出四个数,设其中最小的数为x,那么其他三个数怎样表示?

(2)甲同学这样圈出的四个数的和为432,你能求出这四个数吗?

(3)乙同学想用这样的框圈出和为172的四个数,可能吗?

(4)你能用这样的框圈出和为352的四个数吗?若能,请写出这四个数;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明和小红学习了用图形面积研究整式乘法的方法后,分别进行了如下数学探究:把一根铁丝截成两段,

探究1:小明截成了两根长度不同的铁丝,并用两根不同长度的铁丝分别围成两个正方形,已知两正方形的边长和为20cm,它们的面积的差为40cm2,则这两个正方形的边长差为

探究2:小红截成了两根长度相同的铁丝,并用两根同样长的铁丝分别围成一个长方形与一个正方形,若长方形的长为xm,宽为ym,

(1)用含x、y的代数式表示正方形的边长为

(2)设长方形的长大于宽,比较正方形与长方形面积哪个大,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以直线AB上一点O为端点作射线 OC使BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)

(1)如图1,若直角三角板DOE的一边OD放在射线OBCOE= °;

(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置OE恰好平分AOC请说明OD所在射线是BOC的平分线

(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时若恰好COD= AOEBOD的度数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠CAB=DAB下列条件中不能使△ABC≌△ABD的是( )

A. C=D B. ABC=ABD C. AC=AD D. BC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AOB是一个直角,作射线OC,再分别作AOCBOC的平分线ODOE

(1) 如图1,当BOC=70°时,求DOE的度数.

(2) 如图2,当射线OCAOB内绕点O旋转时,DOE的大小是否发生变化?说明理由.

(3) 当射线OCAOB外绕点O旋转且AOC为钝角时,画出图形,直接写出相应的DOE的度数.(不必写出过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:
(1)(﹣1)2+2sin30°+ 0
(2)(1+

查看答案和解析>>

同步练习册答案