精英家教网 > 初中数学 > 题目详情

【题目】已知AOB是一个直角,作射线OC,再分别作AOCBOC的平分线ODOE

(1) 如图1,当BOC=70°时,求DOE的度数.

(2) 如图2,当射线OCAOB内绕点O旋转时,DOE的大小是否发生变化?说明理由.

(3) 当射线OCAOB外绕点O旋转且AOC为钝角时,画出图形,直接写出相应的DOE的度数.(不必写出过程)

【答案】(1)45°;(2)45°;(3)DOE的大小发生变化.45°或135°.

【解析】试题分析

(1)因为∠DOE=∠COD+∠COE,所以分别根据角平分线的定义求出∠COD和∠COE即可;

(2)因为∠DOE=∠COD+∠COE,结合角平分线即可求解;

(3)需要分类,当∠AOC是钝角时和当∠AOC大于钝角时,结合角平分线求解.

试题解析

(1) 根据题意得AOC=90°BOC=20°.因为ODOE分别平分AOCBOC,所以COD=AOC=10°COE=BOC=35°,所以DOE=CODCOE=45°

(2) DOE的大小不变,理由:DOE=CODCOE=AOCCOB= (AOCCOB)= AOB=45°

(3) ∠DOE的大小发生变化.如图3,则∠DOE45°;如图4,则∠DOE135°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读材料.

点M,N在数轴上分别表示数m和n,我们把m,n之差的绝对值叫做点M,N之间的距离,即MN=|m﹣n|.如图,在数轴上,点A,B,O,C,D的位置如图所示,则DC=|3﹣1|=|2|=2;CO=|1﹣0|=|1|=1;BC=|(﹣2)﹣1|=|﹣3|=3;AB=|(﹣4)﹣(﹣2)|=|﹣2|=2.

(1)OA=  ,BD=  

(2)|1﹣(﹣4)|表示哪两点的距离?

(3)点P为数轴上一点,其表示的数为x,用含有x的式子表示BP=  ,当BP=4时,x=  ;当|x﹣3|+|x+2|的值最小时,x的取值范围是  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于实数a,我们规定:用符号[]表示不大于的最大整数,称[]a的根整数,例如:[]=3[]=3

1)仿照以上方法计算:[] =   [] =   

2)若[]=1,写出满足题意的x的整数值   

如果我们对a连续求根整数,直到结果为1为止.例如:对10连续求根整数2 []=3[]=1,这时候结果为1

3)对100连续求根整数,   次之后结果为1

4)只需进行3次连续求根整数运算后结果为1的所有正整数中,最大的是   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A、B的坐标分别为(2,3)和(0,2).

(1)AB的长为   

(2)点Cy轴上,△ABC是等腰三角形,写出所有满足条件的点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列四个图形中,既是轴对称又是中心对称的图形是(
A.4个
B.3个
C.2个
D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列式子,并解决问题.

≈0.1260;≈0.2714;≈0.5848;≈1.260;≈2.714.

(1) , ;

(2)≈58.48,x≈ ;

(3)通过类比,你能得到什么规律?用一句话描述出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各题
(1)化简求值:(1﹣ )÷ ,用你喜欢的数代入求值.
(2)计算:|1﹣ |﹣2sin45°+(π﹣3.14)0+22

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明家与学校在同一直线上且相距720m,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x(分),兄弟两人之间的距离为ym,图中的折线是y与x的函数关系的部分图象,根据图象解决下列问题:

(1)弟弟步行的速度是 m/分,点B的坐标是

(2)线段AB所表示的y与x的函数关系式是

(3)试在图中补全点B以后的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形A1B1C1O,A2B2C2C1 , A3B3C3C2 , …按如图所示放置,点A1 , A2 , A3 , 和点C1 , C2 , C3 , …,分别在直线y=kx+b(k>0)和x轴上,已知点B1 , B2 , B3 , B4的坐标分别为(1,1)(3,2),(7,4),(15,8),则Bn的坐标是(
A.(2n﹣1,2n1
B.(2n , 2n﹣1)
C.(2n1 , 2n
D.(2n1﹣1,2n1

查看答案和解析>>

同步练习册答案