【题目】观察下列式子,并解决问题.
≈0.1260;≈0.2714;≈0.5848;≈1.260;≈2.714.
(1)≈ ,≈ ;
(2)若≈58.48,则x≈ ;
(3)通过类比,你能得到什么规律?用一句话描述出来.
【答案】答案见解析.
【解析】
(1)根据被开方数之间的1000倍关系得出结论;
(2)先找到与58.48有关的数,通过开立方的结果之间的关系,得出被开方数之间的关系;
(3)根据(1)(2)得出规律:被开方数的小数点每向右(左)移动3位,立方根的小数点向相同的方向移动1位.
(1)==×10≈0.5848×10=5.848;
= =×10≈1.260×10=12.60;
(2)∵≈0.5848,∴0.58483≈0.2.
∵≈58.48,∴x=58.483=(0.5848×100)3=0.58483×1000000=0.2×1000000=200000;
(3)在开立方运算中,被开立方数的小数点向左或向右移动3n位时,其立方根的小数点相应地向左或向右移动n位(n为正整数).
科目:初中数学 来源: 题型:
【题目】小伙李明刚多次将“宜昌柠檬”从宜昌市运往A市销售,市场调查发现:运往A市的火车与汽车的平均速度分别为100千米/时和80千米/时,运输费分别为每千米15m元和20m元,装卸费分别为2000m元和900m元(m为正数),火车、汽车装卸时间为2小时,运输过程中的损耗均为200m元/时.
(1)如果宜昌市与A市之间的路程400千米,求汽车的三费(装卸费、运输费、耗损费)比火车的三费多多少元?
(2)如果宜昌市与A市之间的路程为S千米,火车与汽车在运输途中停误的时间分别是2小时和3.1小时,请你通过计算说明,李明刚选择哪种方式比校合算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】利用等式的性质解下列方程:
(1)x-1=3;
(2)-5x=15;
(3)5x+4=-24;
(4)0.2x-0.5=0.7;
(5)2x-1=4x+3;
(6)4-3x=2x-1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.
(1) 如图1,当∠BOC=70°时,求∠DOE的度数.
(2) 如图2,当射线OC在∠AOB内绕点O旋转时,∠DOE的大小是否发生变化?说明理由.
(3) 当射线OC在∠AOB外绕点O旋转且∠AOC为钝角时,画出图形,直接写出相应的∠DOE的度数.(不必写出过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某大型超市从生产基地购进一批水果,运输过程中质量损失10%.假设不计超市其他费用,如果超市要想获得至少20%的利润,那么这种水果的售价在进价基础上应至少提高( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E、F、G、H分别是任意四边形ABCD中AD、BD、BC、CA的中点,
(1)求证:四边形EFGH是平行四边形;
(2)四边形ABCD的边至少满足什么条件时,四边形EFGH是菱形?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】四边形ABCD中,∠BAD的角平分线与边BC交于点E,∠ADC的角平分线交直线AE于点O.
(1)若点O在四边形ABCD的内部,
①如图1,若AD∥BC,∠B=40°,∠C=70°,则∠DOE= °;
②如图2,试探索∠B、∠C、∠DOE之间的数量关系,并将你的探索过程写下来.
(2)如图3,若点O在四边形ABCD的外部,请你直接写出∠B、∠C、∠DOE之间的数量关系.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com