【题目】已知:c=10,且a,b满足(a+26)2+|b+c|=0,请回答问题:
(1)请直接写出a,b,c的值:a= ,b= ;
(2)在数轴上a、b、c所对应的点分别为A、B、C,记A、B两点间的距离为AB,则AB= ,AC= ;
(3)在(1)(2)的条件下,若点M从点A出发,以每秒1个单位长度的速度向右运动,当点M到达点C时,点M停止;当点M运动到点B时,点N从点A出发,以每秒3个单位长度向右运动,点N到达点C后,再立即以同样的速度返回,当点N到达点A时,点N停止.从点M开始运动时起,至点M、N均停止运动为止,设时间为t秒,请用含t的代数式表示M,N两点间的距离.
【答案】(1)-26;-10;(2)16; 36;(3)见解析;
【解析】
(1)根据题意可以求得a、b、c的值,从而可以解答本题;
(2)①根据数轴上两点的距离公式:AB=xB-xA,可得AB和AC的长;
②同理可以表示AP和PC的长;
(3)先计算t的取值,因为点M从A出发,以每秒1个单位长度的速度向终点C移动,且AC=36,所以需要36秒完成,又因为当点M运动到B点时,即16秒后,点N从A出发,以每秒3个单位长度向C点运动,所以点N还需要运动24秒,所以一共需要40秒,再分别计算M、N两次相遇的时间,分五种情况讨论,根据图形结合数轴上两点的距离表示MN的长.
(1)∵c是最小的两位正整数,a,b满足(a+26)2+|b+c|=0,
∴c=10,a+26=0,b+c=0,
∴a=-26,b=-10,c=10,
故答案为:-26,-10,10;
(2)①∵数轴上a、b、c三个数所对应的点分别为A、B、C,
∴点A表示的数是-26,点B表示的数是-10,点C表示的数是10,
所画的数轴如图1所示;
∴AB=-10+26=16,
AC=10-(-26)=36;
故答案为:16,36;
②∵点P为点A和C之间一点,其对应的数为x,
∴AP=x+26,PC=10-x;
故答案为:x+26,10-x;
(3)点N运动的总时间为:2(36÷3)=12×2=24,
24+16=40,
设t秒时,M、N第一次相遇,
3(t-16)=t,
t=24,
分五种情况:
①当0≤t≤16时,如图2,点M在运动,点N在A处,此时MN=t,
②当16<t≤24时,如图3,M在N的右侧,此时MN=t-3(t-16)=-2t+48,
③M、N第二次相遇(点N从C点返回时):t+3(t-16)=36×2,
t=30,
当24<t≤30时,如图4,点M在N的左侧,此时MN=36×2-t-3(t-16)=-4t+120,
④当30<t≤36时,如图5,点M在N的右侧,此时MN=3(t-16)-36-(36-t)=4t-120,
⑤当36<t≤40时,如图6,点M在点C处,此时MN=3(t-16)-36=3t-84,
科目:初中数学 来源: 题型:
【题目】为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“A.奶制品类,B.肉制品类,C.面制品类,D.豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:
(1)这次抽查了四类特色美食共 种,扇形统计图中a= ,扇形统计图中A部分圆心角的度数为 ;
(2)补全条形统计图;
(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家月份用水量和交费情况:
月份 | |||||
用水量(吨) | |||||
费用(元) |
根据表格中提供的信息,回答以下问题:
求出规定吨数和两种收费标准;
若小明家月份用水吨,则应缴多少元?
若小明家月份缴水费元,则月份用水多少吨?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=﹣ x2+bx﹣6的图象与x轴交于一点A(2,0),与y轴交于点B,对称轴与x轴交于点C,连接BA,BC,求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,一次函数y=x+2的图象交y轴于点A,交x轴于点B,点E在x轴的正半轴上,OE=8,点F在射线BA上,过点F作x轴的垂线,点D为垂足,OD=6.
(1)写出点F的坐标 ;
(2)求证:∠ABO=45°;
(3)操作:将一块足够大的三角板的直角顶点放在线段BF的中点M处,一直角边过点E,交FD于点C,另一直角边与x轴相交于点N,如图2,求点N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a,b满足 +(c-7)2=0.
(1) a= ,b= ,c= .
(2) 若将数轴折叠,使得A点与C点重合,则点B与数 表示的点重合.
(3) 点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC.则AB= ,AC= ,BC= .(用含t的代数式表示)
(4) 请问:3BC-2AB的值是否随着时间t的变化而改变? 若变化,请说明理由;若不变,请求其值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△ADE都是等腰三角形,BC、DE分别是这两个等腰三角形的底边,且∠BAC=∠DAE.
(1)求证:BD=CE;
(2)连接DC.如果CD=CE,试说明直线AD垂直平分线段BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A,B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.
(1)求抛物线的解析式;
(2)求△MCB的面积S△MCB .
(3)在坐标轴上,是否存在点N,满足△BCN为直角三角形?如存在,请直接写出所有满足条件的点N.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一种笔记本的售价为2.2元/本,如果买100本以上,超过100本部分的售价为2元/本.
(1)小强和小明分别买了50本和200本,他们俩分别花了多少钱?
(2)如果小红买这种笔记本花了380元,她买了多少本?
(3)如果小红买这种笔记本花了n元,她又买了多少本?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com