精英家教网 > 初中数学 > 题目详情

【题目】为了鼓励居民节约用水,某市自来水公司对每户月用水量进行计费,每户每月用水量在规定吨数以下的收费标准相同;规定吨数以上的超过部分收费标准相同,以下是小明家月份用水量和交费情况:

月份

用水量(吨)

用(元)

根据表格中提供的信息,回答以下问题:

求出规定吨数和两种收费标准;

若小明家月份用水吨,则应缴多少元?

若小明家月份缴水费元,则月份用水多少吨?

【答案】1)不超过10吨,10吨以内,每吨2元,超过10吨的部分每吨3.

250 313

【解析】

1)根据12月份可知,当用水量不超过10吨时,每吨收费2元.根据3月份的条件,用水11吨,其中10吨应交20元,超过的1吨收费3元,则超出10吨的部分每吨收费3元.

2)根据求出的收费标准,则用水20吨应缴水费就可以算出.

3)中存在的相等关系是:10吨的费用20+超过部分的费用=29元.

解:(1)从表中可以看出规定吨数为不超过10吨,10吨以内,每吨2元,超过10吨的部分每吨3.

2)小明家6月份的水费是:(元).

3)设小明家7月份用水吨,因为,所以

由题意得,解得:

故小明家7月份用水13吨.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是一个无盖正方体纸盒的表面展开图,请解答下列问题:

(1)若在图上补上一个同样大小的正方形F,便它能围成一个正方体,共有   种补法;

(2)请画出两种不同的补法;

(3)设A=a3+a2b+3,B=a2b﹣3,C=a3﹣1,D=6﹣a2b,若(2)中的展开图围成正方体后.相对两个面的代数式之和都相等,分别求E、F所代表的代数式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,∠DAE是四边形ABCD的一个外角,且AD平分∠CAE.
求证:DB=DC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法中,正确的有(

①射线和射线是同一条射线.②将一根细木条固定在墙上,至少需要钉两个钉子,其理论依据是:两点之间线段最短.③两点间的连线的长度叫做这两点间的距离.

④表示北偏东方向、南偏东方向的两条射线所夹的角为直角.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,,垂足为G,若,则AE的边长为  

A. B. C. 4 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市居民使用自来水按如下标准收费(水费按月缴纳):

户月用水量

单价

不超过12 m3的部分

a元∕m3

超过12 m3但不超过20 m3的部分

1.5a元∕m3

超过20 m3的部分

2a元∕m3

(1) 当a=2时,某用户一个月用了28 m3水,求该用户这个月应缴纳的水费;

(2) 设某户月用水量为n 立方米,当n>20时,则该用户应缴纳的水费_____________元(用含a、n的整式表示);

(3) 当a=2时,甲、乙两用户一个月共用水40 m3,已知甲用户缴纳的水费超过了24元,设甲用户这个月用水xm3,,试求甲、乙两用户一个月共缴纳的水费(用含x的整式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2018=0,O为原点

(1) 试求a和b的值

(2) 点C从O点出发向右运动,经过3秒后点C到A点的距离是点C到B点距离的3倍,求点C的运动速度?

(3) 点D以1个单位每秒的速度从点O向右运动,同时点P从点A出发以5个单位每秒的速度向左运动,点Q从点B出发,以20个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问的值是否发生变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:c=10,且a,b满足(a+26)2+|b+c|=0,请回答问题:

(1)请直接写出a,b,c的值:a=   ,b=   

(2)在数轴上a、b、c所对应的点分别为A、B、C,记A、B两点间的距离为AB,则AB=   ,AC=   

(3)在(1)(2)的条件下,若点M从点A出发,以每秒1个单位长度的速度向右运动,当点M到达点C时,点M停止;当点M运动到点B时,点N从点A出发,以每秒3个单位长度向右运动,点N到达点C后,再立即以同样的速度返回,当点N到达点A时,点N停止.从点M开始运动时起,至点M、N均停止运动为止,设时间为t秒,请用含t的代数式表示M,N两点间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形OABC的边长为1,把它放在如图所示的直角坐标系中,点M(t,0)是x轴上一个动点(t1),连接BM,在BM的右侧作正方形BMNP;直线DE的解析式为y=2x+b,与x轴交于点D,与y轴交于点E,当△PDE为等腰直角三角形时,点P的坐标是_____

查看答案和解析>>

同步练习册答案