【题目】已知:如图1,在平面直角坐标系中,点A,B,E分别是x轴和y轴上的任意点. BD是∠ABE的平分线,BD的反向延长线与∠OAB的平分线交于点C.
探究: (1)求∠C的度数.
发现: (2)当点A,点B分别在x轴和y轴的正半轴上移动时,∠C的大小是否发生变化?若不变,请直接写出结论;若发生变化,请求出∠C的变化范围.
应用:(3)如图2在五边形ABCDE中,∠A+∠B+∠E=310°,CF平分∠DCB,CF的反向延长线与∠EDC外角的平分线相交于点P,求∠P的度数.
【答案】(1)∠C=45°;(2)不变.∠C=∠AOB =45°; (3) 25°.
【解析】
(1)先确定∠ABE与∠OAB的关系,∠ABE=∠OAB+90°,再根据角平分线和三角形的外角求得∠ACB的度数;
(2)设∠DBC=x,∠BAC=y,再根据BC平分∠DBO,AC平分∠BAO可知∠CBO=∠DBC=x,∠OAC=∠BAC=y.再由∠DBO是△AOB的外角,∠DBC是△ABC的外角可得出关于x、y,∠C的方程组,求出∠C的值即可;
(3)延长ED,BC相交于点G,易求∠G的度数,由三角形外角的性质可得结论.
(1)∵∠ABE=∠OAB+∠AOB,∠AOB =90°,
∴∠ABE=∠OAB+90°,
∵BD是∠ABE的平分线,AC平分∠OAB,
∴∠ABE=2∠ABD,∠OAB=2∠BAC,
∴2∠ABD=2∠BAC+90°,
∴∠ABD=∠BAC+45°,
又∵∠ABD= ∠BAC +∠C,
∴∠C=45°.
(2)不变.∠C=∠AOB =45°.
理由如下:
设∠DBA=x,∠BAC=y,
∵BD平分∠EBA,AC平分∠BAO.
∴∠EBD=∠DBA=x,∠OAC=∠BAC=y.
∵∠EBA是△AOB的外角,∠DBA是△ABC的外角,
∴,
∴∠C=45°.
(3) 延长ED,BC相交于点G.
在四边形ABGE中,
∵∠G=360°-(∠A+∠B+∠E)=50°,
∴∠P=∠FCD-∠CDP= (∠DCB-∠CDG)
=∠G=×50°=25°.
科目:初中数学 来源: 题型:
【题目】多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( )
A.极差是47B.众数是42
C.中位数是58D.每月阅读数量超过40的有4个月
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,为坐标原点.直线交轴于点,交轴于点,,垂足为,交轴负半轴于点,且点坐标为.
(1)求直线的解析式;
(2)点为直线右侧第一象限内一点,连接、,将线段绕点顺时针旋转90°,得到线段,点落在点处,设点的坐标为,求点的坐标(用含的式子表示);
(3)在(2)的条件下,过点作垂直于轴于点,交于点,连接,点为延长线上一点,连接,交于点,连接,若,,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,CD⊥AB,BE⊥AC,垂足分别为D、E,BE、CD相交于点O.如果AB=AC,那么图中全等的直角三角形的对数是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C.
(1)求证:BD=CE;
(2)若BE、CD交于点F,求证:△BDF≌△CEF;
(3)在(2)的条件下连接AF,求证:AF平分∠BAC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A是反比例函数y= (x>0)上的一个动点,连接OA,过点O作OB⊥OA,并且使OB=2OA,连接AB,当点A在反比函数图象上移动时,点B也在某一反比例函数图象y= 上移动,k的值为( )
A.2
B.﹣2
C.4
D.﹣4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(0,α),B(b,α),且α、b满足(a﹣2)+=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.
(1)求点C,D的坐标及四边形ABDC的面积.
(2)在y轴上是否存在一点M,连接MC,MD,使S△MCD=2S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由;
(3)点P是直线BD上的一个动点,连接PA,PO,当点P在直线BD上移动时(不与B,D重合)直接写出∠BAP,∠DOP,∠APO之间满足 的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆、、,组成一条平滑的曲线,点从原点出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2019秒时,点的坐标是____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.已知铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6m,同一时刻,小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,那么塔高AB为( )
A. 24m B. 22m C. 20m D. 18m
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com