精英家教网 > 初中数学 > 题目详情
如图,△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.
(1)如果点Q、P,分别从B、A同时出发,那么几秒后,△PBQ的面积等于4cm2
(2)在(1)中,△PQB的面积能否等于7cm2?说明理由.
(3)如果点Q、P,分别从B、A同时出发,那么几秒后,PQ的长度等于5cm?
考点:一元二次方程的应用
专题:几何动点问题
分析:(1)设x秒后△PBQ的面积为4cm2,此时BP=(5-x)cm,BQ=2xcm,根据三角形的面积公式建立方程求出其解即可;
(2)由(1)得,当△PQB的面积等于7cm2说解方程即可;
(3)设y秒后PQ的长度等于5cm,利用勾股定理得出即可.
解答:解:(1)设x秒后,△PBQ的面积等于4cm2
则BP=(5-x)cm,BQ=2xcm,
故S△QPB=
1
2
×PB×BQ=
1
2
×(5-x)×2x=4
解得:x1=1,x2=4.
答:1秒或4秒后,△PBQ的面积等于4cm2

(2)△PQB的面积不能等于7cm2
理由:由(1)得:S△QPB=
1
2
×PB×BQ=
1
2
×(5-x)×2x=7
即x2-5x+7=0,
∵b2-4ac=-24<0,
∴此方程无实数根,
∴△PQB的面积不能等于7cm2

(3)设y秒后,PQ的长度等于5cm,根据题意可得:
PB2+BQ2=25,
即(5-y)2+4y2=25,
解得:y1=0(不合题意舍去),y2=2,
故2秒后,PQ的长度等于5cm.
点评:本题考查了列一元二次方程解实际问题的运用,一元二次方程的解法的运用,三角形的面积公式的运用,解答时根据三角形的面积=4建立方程是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的方程a(3x-2)+b(2x-3)=8x-7.
(1)若b=1,a≠2时,求方程的解;
(2)当a,b满足什么条件时,方程有无数个解?

查看答案和解析>>

科目:初中数学 来源: 题型:

若x等于它的倒数,则分式
x+2
x2-6x+9
÷
1
(x-2)(x-3)2
的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在RT△ABC中,∠C=90°,BC=a,AC=b,求△ABC的内切圆⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

小李把10000元按一年期的定期储蓄存入银行,到期支取时,扣去利息税后实得本利和为10380元,已知利息税税率为20%,问当时一年期定期储蓄的年利率为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠A=90°,角平分线BD、CE交于O,OC=7,S四边形BEDC=56,求BC长.

查看答案和解析>>

科目:初中数学 来源: 题型:

甲乙两车从A、B两地相向而行,甲车比乙车早出发半个小时,甲、乙两车的速度比是2:3,相遇时,甲比乙少走了10千米,已知乙车走了1小时30分,求甲乙两车的速度和A、B两地的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

绝对值小于4-
3
的整数有
 

查看答案和解析>>

科目:初中数学 来源: 题型:

指出下列各单项式的系数和次数.
(1)3x3
(2)-
7
5
xyz;
(3)0.12s;
(4)
2
3
x2b.

查看答案和解析>>

同步练习册答案