精英家教网 > 初中数学 > 题目详情

【题目】在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD.

(1)如图②,当∠C≠90°,AD为∠BAC的角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想并证明;

(2)如图③,当AD为△ABC的外角平分线时,线段AB、AC、CD又有怎样的数量关系?请写出你的猜想,并对你的猜想给予证明.

【答案】(1)(2)见解析

【解析】(1)首先在AB上截取AE=AC,连接DE,易证△ADE≌△ADC(SAS),则可得∠AED=∠C,ED=CD,又由∠ACB=2∠B,易证DE=CD,则可求得AB=AC+CD;
(2)首先在BA的延长线上截取AE=AC,连接ED,易证△EAD≌△CAD,可得ED=CD,∠AED=∠ACD,又由∠ACB=2∠B,易证DE=EB,则可求得AC+AB=CD.

解:(1)猜想:AB=AC+CD.
证明:如图,在AB上截取AE=AC,连接DE,


∵AD为∠BAC的角平分线时,
∴∠BAD=∠CAD,
∵AD=AD,
∴△ADE≌△ADC(SAS),
∴∠AED=∠C,ED=CD,
∵∠ACB=2∠B,
∴∠AED=2∠B,
∴∠B=∠EDB,
∴EB=ED,
∴EB=CD,
∴AB=AE+DE=AC+CD.
(2)猜想:AB+AC=CD.
证明:如图,在BA的延长线上截取AE=AC,连接ED.


∵AD平分∠FAC,
∴∠EAD=∠CAD.
在△EAD与△CAD中,AE=AC,∠EAD=∠CAD,AD=AD,
∴△EAD≌△CAD.
∴ED=CD,∠AED=∠ACD.
∴∠FED=∠ACB.
又∠ACB=2∠B,∠FED=∠B+∠EDB,∠EDB=∠B.
∴EB=ED.
∴EA+AB=EB=ED=CD.
∴AC+AB=CD.

“点睛”此题考查了全等三角形的判定与性质以及等腰三角形的判定定理.此题难度适中,解题的关键是注意数形结合思想的应用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列两个图形,一定相似的是(  )

A. 两个等腰三角形 B. 两个直角三角形

C. 两个等边三角形 D. 两个矩形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2016云南省第21题)某超市为庆祝开业举办大酬宾抽奖活动,凡在开业当天进店购物的顾客,都能获得一次抽奖的机会,抽奖规则如下:在一个不透明的盒子里装有分别标有数字1、2、3、4的4个小球,它们的形状、大小、质地完全相同,顾客先从盒子里随机取出一个小球,记下小球上标有的数字,然后把小球放回盒子并搅拌均匀,再从盒子中随机取出一个小球,记下小球上标有的数字,并计算两次记下的数字之和,若两次所得的数字之和为8,则可获得50元代金券一张;若所得的数字之和为6,则可获得30元代金券一张;若所得的数字之和为5,则可获得15元代金券一张;其他情况都不中奖.

(1)请用列表或树状图(树状图也称树形图)的方法(选其中一种即可),把抽奖一次可能出现的结果表示出来;

(2)假如你参加了该超市开业当天的一次抽奖活动,求能中奖的概率P.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】投影可分为________________;一个立体图形,共有________种视图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各式从左到右的变形中,属于因式分解的是(  )

A.12x3y=﹣3x34yB.mmn1)=m2nm

C.y24y1yy4)﹣1D.ax+ayaxy

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).

(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段PC和线段PQ的位置关系;

(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ACB为锐角,点D为BC边上一动点,连接AD,以AD为直角边且在AD的上方作等腰直角三角形ADF.

(1)如图1,若AB=AC,∠BAC=90°,当点D在线段BC上时(不与点B重合),

证明:△ACF≌△ABD

(2)如图2,当点D在线段BC的延长线上时,其它条件不变,猜想CF与BD的数量关系和位置关系是什么,并说明理由;

(3)如图3,若AB≠AC,∠BAC≠90°,∠BCA=45°,点D在线段BC上运动(不与点B重合),试探究CF与BD位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数填在相应的大括号里(将各数用逗号分开):﹣4,0.62, ,18,0,﹣8.91,+100

正数:{______…};负数:{______…};整数:{______…};分数:{______…}.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某地某日最高气温为12℃,最低气温为-7℃,该日气温的极差是℃.

查看答案和解析>>

同步练习册答案