精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M.

(1)若∠A=40°,求∠NMB的度数.

(2)如果将(1)中∠A的度数改为70°,其余条件不变,求∠NMB的度数.

(3)由(1)(2)你发现了什么规律?并说明理由.

【答案】(1) 20°;(2) 35°;

(3)规律:∠NMB=∠A.

【解析】1根据等边对等角,由AB=AC可得到∠ABM=ACB,再结合已知∠A的度数,即可求出∠NMB的度数;

2)仿照第(1)问的求解过程即可得到∠NMB的度数;

3)结合上述两问的解答,即可发现∠NMB和∠A之间的大小关系,然后仿照上述解答过程进行验证即可.

解:(1AB=AC

∴∠ABM=ACB.

∵∠BAC=40°ABM=ACB

∴∠ABM=×(180°-BAC)=70°.

MNAB的垂直平分线,∠ABM=70°

∴∠NMB=90°-ABM=90°-70°=20°.

2)与(1)同理可得∠B=×(180°-BAC)=55°

∴∠NMB=90°-55°=35°.

3)规律:在等腰ABC中,当AB=ACNMB的度数恰好为顶角∠A度数的一半,即∠NMB=A.理由如下:

AB=AC

∴∠ABM=ACB.

∴∠ABM= (180°-A)=90°-A.

∵∠ABM=90°-ABNM=90°

∴∠BMN=90°-ABM=A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知点A是双曲线y= 在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y= (k<0)上运动,则k的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于两个已知图形G1、G2,在G1任取一点P,在G2任取一点Q,当线段PQ的长度最小时,我们称这个最小长度为G1、G2密距”.例如,如上图,,则点A射线OC之间的密距B射线OC之间的密距3,如果直线y=x-1和双曲线之间的密距,则k值为(

A. k=4 B. k=-4 C. k=6 D. k=-6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.在平面直角坐标系中,点A(3,0),B(0,﹣4),C是x轴上一动点,过C作CD∥AB交y轴于点D.

(1)的值是


(2)若以A,B,C,D为顶点的四边形的面积等于54,求点C的坐标.
(3)将△AOB绕点A按顺时针方向旋转90°得到△AO′B′,设D的坐标为(0,n),当点D落在△AO′B′内部(包括边界)时,求n的取值范围.(直接写出答案即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=AC,BC=12,B=30°,AB的垂直平分线DEBC边于点E,AC的垂直平分线MNBC于点N.

(1)求AEN的周长;

(2)求证:BE=EN=NC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为(

A.4
B.6
C.8
D.10

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形纸片ABCD中,∠A=60°,将纸片折叠,点A、D分别落在A′、D′处,且A′D′经过B,EF为折痕,当D′F⊥CD时, 的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学为备战省运会,在校运动队的学生中进行了全能选手的选拔,并将参加选拔学生的综合成绩分成四组,绘成了如下尚不完整的统计图表.

组别

成绩

组中值

频数

第一组

90≤x<100

95

4

第二组

80≤x<90

85

m

第三组

70≤x<80

75

n

第四组

60≤x<70

65

21

根据图表信息,回答下列问题:
(1)参加活动选拔的学生共有人;表中m= , n=
(2)若将各组的组中值视为该组的平均值,请你估算参加选拔学生的平均成绩;
(3)将第一组中的4名学生记为A、B、C、D,由于这4名学生的体育综合水平相差不大,现决定随机挑选其中两名学生代表学校参赛,试通过画树形图或列表的方法求恰好选中A和B的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,4,5,x.甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复试验.实验数据如下表:

摸球总次数

10

20

30

60

90

120

180

240

330

450

“和为8”出现的频数

2

10

13

24

30

37

58

82

110

150

“和为8”出现的频率

0.20

0.50

0.43

0.40

0.33

0.31

0.32

0.34

0.33

0.33

解答下列问题:
(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率将稳定在它的概率附近.估计出现“和为8”的概率是
(2)当x=7时,请用列表法或树状图法计算“和为8”的概率;并判断x=7是否可能.

查看答案和解析>>

同步练习册答案