【题目】如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(8,n)在边AB上,反比例函数(k≠0)在第一象限内的图象经过点D、E,且tan∠BOA=.
(1)求反比例函数的解析式和n的值;
(2)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正半轴交于点H、G,求G点的坐标.
科目:初中数学 来源: 题型:
【题目】对于二次函数y=x2+2x﹣1的图象与性质,下列说法中正确的是( )
A.顶点坐标为(1,2)
B.当x<﹣1时,y随x的增大而增大
C.对称轴是直线x=﹣1
D.最小值是﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,DG平分∠ADB交AB于点G,GF⊥BD于F.
(1)求证:△ADG≌△FDG;(2)若BG=2AG,BD=2,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=mx+4的图象与x轴相交于点A,与反比例函数y=的图象相交于点B(1,6).
(1)求一次函数和反比例函数的解析式;
(2)设点P是x轴上一点,若S△APB=18,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2).
(1)求过A、B、C三点的抛物线解析式;
(2)若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒(0≤t≤6),设△PBF的面积为S;
①求S与t的函数关系式;
②当t是多少时,△PBF的面积最大,最大面积是多少?
(3)点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为( )
A. 3:2:1 B. 1:2:3 C. 3:4:5 D. 5:4:3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在同一内有三点、、,请你根据下列要求用直尺和圆规作图:
①画线段, .
②作射线,并在射线上取一点,使.
③作射线,并在射线上取一点,使.
请根据以上作图,解答下列问题:
()请问、分别是哪两条线段的中点?并说理由.
()若巳知线段的长为,求线段的长度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com