解:(1)∵AB是⊙O的直径,
∴∠ADB=∠ACB=90°,
∵AB=5,sin∠CAB=

.
∴BC=3,AC=4,
∵CE=m,
∴AE=4-m,
∵∠DAE=∠DBC,
∴

=

,即

=

,即DE=

,
∵

=k,
∴

=k,即BE
2=

,
在Rt△BCE中,BC
2+CE
2=BE
2,即3
2+m
2=

,
∴k=

;
(2)∵AD∥OC
∴∠DAC=∠ACO
∵∠DAC=∠DBC
∴∠ACO=∠DBC
∵OA=OC
∴∠BAC=∠ACO
∴∠BAC=∠DBC
∵∠ACB=∠BCE
∴△ACB∽△BCE
∴

=

∴CE=BC×

∵BC=3 AC=4
∴CE=

,即m=

.
分析:(1)先根据圆周角定理及直角三角形的性质求出AC及BC的长,再由CE=m可知AE=4-m,由∠DAE=∠DBC可得出DE=

,代入

=k即可用k、m表示出BE的长,再根据△ABC是直角三角形根据勾股定理即可用m表示出k;
(2)由AD∥OC得出∠DAC=∠ACO,根据∠DAC=∠DBC,可知∠ACO=∠DBC,由OA=OC可知∠BAC=∠ACO,故∠BAC=∠DBC
由相似三角形的判定定理得出△ACB∽△BCE,根据相似三角形的对应边成比例即可得出结论.
点评:本题考查的是相似三角形的判定与性质,全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.