【题目】给出下列函数:①; ②; ③.从中任取一个函数,取出的函数符合条件“当时,函数值随增大而减小”的概率是( ).
A. B. C. D.
【答案】B
【解析】分析:
根据三个函数解析式结合函数的特点分析可知,当x>1时,第1个函数的函数值y随x的增大而增大;第2个函数的函数值y随x的增大而减小;第3个函数的函数值y随x的增大而减小;由此即可求得所求概率.
详解:
(1)在函数中,当x>1时,函数关系式为y=3x-1中,y随x的增大而增大;
(2函数 的图象在第一、三象限,当x>1时,y随x的增大而减小;
(3)在函数y=-3x2中,由于函数图象开口向下,对称轴为y轴,因此该函数中,当x>1时,y随x的增大而减小;
∴在上述三个函数中,当x>1时,y随x的增大而减小的有2个,
∴从上述三个函数中任取一个函数,取出的函数符合条件“当x>1时,y随x的增大而减小”的概率为.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数的图象上.
(1)求反比例函数的表达式;
(2)在x轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形纸片ABCD中,AB=6 cm,BC=8 cm,点E是BC边上一点,连接AE,并将△AEB沿AE折叠,得到△AEB′,以C,E,B′为顶点的三角形是直角三角形时,BE的长为____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】勾股定理是人类最伟大的十个科学发现之一,西方国家称之为毕达哥拉斯定理,但远在毕达哥拉斯出生之前,这一定理早已被人们所利用,世界上各个文明古国都对勾股定理的发现和研究作出过贡献(希腊、中国、埃及、巴比伦、印度等),特别是定理的证明,据说有400余种方法.其中在《几何原本》中有一种证明勾股定理的方法:如图所示,作CG⊥FH,垂足为G,交AB于点P,延长FA交DE于点S,然后将正方形ACED、正方形BCNM作等面积变形,得S正方形ACED=SACQS,S正方形BCNM=SBCQT,这样就可以完成勾股定理的证明.对于该证明过程,下列结论错误的是( )
A. △ADS≌△ACB B. SACQS=S矩形APGF
C. SCBTQ=S矩形PBHG D. SE=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们可用表示以为自变量的函数,如一次函数,可表示为,且,,定义:若存在实数,使成立,则称为的不动点,例如:,令,得,那么的不动点是1.
(1)已知函数,求的不动点.
(2)函数(是常数)的图象上存在不动点吗?若存在,请求出不动点;若不存在,请说明理由;
(3)已知函数(),当时,若一次函数与二次函数的交点为,即两点的横坐标是函数的不动点,且两点关于直线对称,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A、B、C是直线l上的三个点,线段AB=8厘米.
(1)若AB=2BC,求线段AC的长度;
(2)若点C是线段AB的中点,点P、Q是直线l上的两个动点,点P的速度为1厘米/秒,点Q的速度为2厘米/秒.点P、Q分别从点C、B同时出发在直线上运动,则经过多少秒时线段PQ的长为5厘来?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为直径,AB=4,C、D为圆上两个动点,N为CD中点,CM⊥AB于M,当C、D在圆上运动时保持∠CMN=30°,则CD的长( )
A. 随C、D的运动位置而变化,且最大值为4 B. 随C、D的运动位置而变化,且最小值为2
C. 随C、D的运动位置长度保持不变,等于2 D. 随C、D的运动位置而变化,没有最值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com