【题目】如图,在平面直角坐标系中,点C(-3,0),点A、B分别在x轴,y轴的正半轴上,且满足.
【1】求点A、B坐标
【2】若点P从点C出发,以每秒1个单位的速度沿射线CB运动,连接AP。设△ABP面积为S,点P的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围
【3】在(2)的条件下,是否存在点P,使以点A、B、P为顶点的三角形与△AOB相似?若存在,请直接写出点P的坐标;若不存在,请说明理由。(本题满分8分)
【答案】
【1】A(1,0) B(0,) ---- ------- 2分
【2】=2-t (0≤t≤) ---- -------4分
=t- (t>) ---- -------6分
【3】P(-3,0), (-1,), (1,), (3, ) ---- -------8分
(答对1个得0.5分)
【解析】
解:
(1)∵
∴OB2-3=0,OA-1=0.
∴OB= ,OA=1.
点A,点B分别在x轴,y轴的正半轴上,
∴A(1,0),B(0, ).
(2)由(1),得AC=4, =12+()2=2, =()2+(3)2=2,
∴AB2+BC2=22+(2 )2=16=AC2.
∴△ABC为直角三角形,∠ABC=90°.设CP=t,过P作PQ⊥CA于Q,由△CPQ∽△CBO,易得PQ= ,
∴S=S
(3)P(-3,0), (-1,), (1,), (3, )
科目:初中数学 来源: 题型:
【题目】如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为( )
A.-4 B.4 C.-2 D.2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个正整数若能表示为两个正整数的平方差,则称这个正整数为“创新数”,比如41=212-202,故41是一个“创新数”.下列各数中,不是“创新数”的是( )
A. 16B. 19C. 27D. 30
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(-4,2),B(-2,6),C(0,4)是直角坐标系中的三点.
(1)把△ABC向右平移4个单位再向下平移1个单位,得到△A1B1C1,画出平移后的图形,并写出点A的对应点A1的坐标;
(2)以原点O为位似中心,将△ABC缩小为原来的一半,得到△A2B2C2,请在所给的坐标系中作出所有满足条件的图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列调查中,最适合采用普查方式进行的是( )
A.对深圳市居民日平均用水量的调查
B.对一批LED节能灯使用寿命的调查
C.对央视“新闻60分”栏目收视率的调查
D.对某中学教师的身体健康状况的调查
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0)。
(1)求此抛物线的解析式;
(2)写出顶点坐标及对称轴;
(3)若抛物线上有一点B,且,求点B的坐标。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个样本的50个数据分别落在5个组内,第1,2,3,4组数据的个数分别是2,8,15,5,则第5组数据的频数为_________,频率为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC 中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).把△PCQ绕点P旋转,得到△PDE,点D落在线段PQ上.
(1)求证:PQ∥AB;
(2)若点D在BAC的平分线上,求CP的长;
(3)若△PDE与△ABC重叠部分图形的周长为T,且12≤T≤16,求x的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com