12£®Ä³Ð£ÎªÁ˽âѧÉúÌåÖÊÇé¿ö£¬´Ó¸÷Äê¼¶Ëæ»ú³éÈ¡²¿·ÖѧÉú½øÐÐÌåÄܲâÊÔ£¬Ã¿¸öѧÉúµÄ²âÊԳɼ¨°´±ê×¼¶ÔӦΪÓÅÐã¡¢Á¼ºÃ¡¢¼°¸ñ¡¢²»¼°¸ñËĸöµÈ¼¶£¬Í³¼ÆÔ±ÔÚ½«²âÊÔÊý¾Ý»æÖƳÉͼ±íʱ·¢ÏÖ£¬ÓÅÐã©ͳ¼Æ4ÈË£¬Á¼ºÃ©ͳ¼Æ6ÈË£¬ÓÚÊǼ°Ê±¸üÕý£¬´Ó¶øÐγÉÈçͼͼ±í£¬Çë°´ÕýÈ·Êý¾Ý½â´ðÏÂÁи÷Ì⣺
ѧÉúÌåÄܲâÊԳɼ¨¸÷µÈ´ÎÈËÊýͳ¼Æ±í
ÌåÄܵȼ¶µ÷ÕûǰÈËÊýµ÷ÕûºóÈËÊý
ÓÅÐã812
Á¼ºÃ1622
¼°¸ñ1212
²»¼°¸ñ44
ºÏ¼Æ4050
£¨1£©Ìîдͳ¼Æ±í£»
£¨2£©¸ù¾Ýµ÷ÕûºóÊý¾Ý£¬²¹È«ÌõÐÎͳ¼ÆÍ¼£»
£¨3£©Èô¸ÃУ¹²ÓÐѧÉú1500ÈË£¬ÇëÄã¹ÀËã³ö¸ÃУÌåÄܲâÊԵȼ¶Îª¡°ÓÅÐ㡱µÄÈËÊý£®

·ÖÎö £¨1£©Çó³ö¸÷×ÔµÄÈËÊý£¬²¹È«±í¸ñ¼´¿É£»
£¨2£©¸ù¾Ýµ÷ÕûºóµÄÊý¾Ý£¬²¹È«ÌõÐÎͳ¼ÆÍ¼¼´¿É£»
£¨3£©¸ù¾Ý¡°ÓÅÐ㡱ÈËÊýÕ¼µÄ°Ù·Ö±È£¬³ËÒÔ1500¼´¿ÉµÃµ½½á¹û£®

½â´ð ½â£º£¨1£©Ìî±íÈçÏ£º

ÌåÄܵȼ¶µ÷ÕûǰÈËÊýµ÷ÕûºóÈËÊý
ÓÅÐã812
Á¼ºÃ1622
¼°¸ñ1212
²»¼°¸ñ44
ºÏ¼Æ4050
¹Ê´ð°¸Îª£º12£»22£»12£»4£»50£»
£¨2£©²¹È«ÌõÐÎͳ¼ÆÍ¼£¬ÈçͼËùʾ£º

£¨3£©³éÈ¡µÄѧÉúÖÐÌåÄܲâÊÔµÄÓÅÐãÂÊΪ24%£¬
Ôò¸ÃУÌåÄܲâÊÔΪ¡°ÓÅÐ㡱µÄÈËÊýΪ1500¡Á24%=360£¨ÈË£©£®

µãÆÀ ´ËÌ⿼²éÁËÌõÐÎͳ¼ÆÍ¼£¬ÓÃÑù±¾¹À¼Æ×ÜÌ壬ÒÔ¼°Í³¼Æ±í£¬ÅªÇåÌâÖеÄÊý¾ÝÊǽⱾÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬ÊÇÒ»¸öÕý·½Ìå±»ÇеôÒ»ÌõÀâºóËùµÃµÄ¼¸ºÎÌ壬ÔòËüµÄ×óÊÓͼÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®Èçͼ£®ABΪ¡ÑOµÄÖ±¾¶£®CA£¬CD·Ö±ðÇСÑOÓÚA¡¢D£¬COµÄÑÓ³¤Ïß½»¡ÑOÓÚM£¬Á¬BD¡¢DM£®
£¨1£©ÇóÖ¤£ºBD¡ÎCM£»
£¨2£©ÈôsinB=$\frac{4}{5}$£®Çótan¡ÏBDM£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èçͼ£¬µãCÊÇÒÔABΪֱ¾¶µÄ°ëÔ²OµÄÈýµÈ·Öµã£¬AC=2£¬ÔòͼÖÐÒõÓ°²¿·ÖµÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®$\frac{4¦Ð}{3}$$-\sqrt{3}$B£®$\frac{4¦Ð}{3}$-2$\sqrt{3}$C£®$\frac{2¦Ð}{3}$$-\sqrt{3}$D£®$\frac{2¦Ð}{3}$-$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÏÂÁи÷×éÊýÖУ¬°ÑÁ½ÊýÏà³Ë£¬»ýΪ1µÄÊÇ£¨¡¡¡¡£©
A£®2ºÍ-2B£®-2ºÍ$\frac{1}{2}$C£®$\sqrt{3}$ºÍ$\frac{\sqrt{3}}{3}$D£®$\sqrt{3}$ºÍ-$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{x+y=6}\\{x-3y=-2}\end{array}\right.$µÄ½âÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x=5}\\{y=1}\end{array}\right.$B£®$\left\{\begin{array}{l}{x=4}\\{y=2}\end{array}\right.$C£®$\left\{\begin{array}{l}{x=-5}\\{y=-1}\end{array}\right.$D£®$\left\{\begin{array}{l}{x=-4}\\{y=-2}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Èçͼ£¬ÔÚÖ±½Ç×ø±êϵÖУ¬¡ÑAµÄÔ²ÐÄAµÄ×ø±êΪ£¨-1£¬0£©£¬°ë¾¶Îª1£¬µãPΪֱÏßy=-$\frac{3}{4}$x+3Éϵ͝µã£¬¹ýµãP×÷¡ÑAµÄÇÐÏߣ¬ÇеãΪQ£¬ÔòÇÐÏß³¤PQµÄ×îСֵÊÇ2$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®£¨1£©¼ÆË㣺$\sqrt{0.04}$+cos245¡ã-£¨-2£©-1-|-$\frac{1}{2}$|£»
£¨2£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨$\frac{x-y}{{x}^{2}-2xy+{y}^{2}}$-$\frac{x}{{x}^{2}-2xy}$£©¡Â$\frac{y}{x-2y}$£¬ÆäÖÐx=2$\sqrt{2}$£¬y=$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¼ÆË㣺$\sqrt{27}$-3$\sqrt{\frac{1}{3}}$=2$\sqrt{3}$£¬$\sqrt{{{£¨-3£©}^2}}$=3£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸