【题目】下列说法错误的是( )
A. 0是绝对值最小的有理数 B. 如果的相反数是5,那么5
C. 若∣∣∣4∣,那么 4 D. 任何非零有理数的平方都大于0
【答案】C
【解析】
因为绝对值是指数轴上表示数对应的点到原点的距离,所以0是绝对值最小的有理数, 因为只有符号不同的两个数是互为相反数,所以”如果的相反数是5,那么5”, C选项,因为,所以”若∣∣∣4∣,那么 4 “,因为正数的平方是正数,负数的平方也是正数,所以任何非零有理数的平方都大于0.
A选项, 因为绝对值是指数轴上表示数对应的点到原点的距离,所以0是绝对值最小的有理数,说法正确,
B选项,因为只有符号不同的两个数是互为相反数,所以”如果的相反数是5,那么5”,说法正确,
C选项,因为,所以”若∣∣∣4∣,那么 4 “说法错误,
D选项,因为正数的平方是正数,负数的平方也是正数,所以任何非零有理数的平方都大于0, 说法正确,故选C.
科目:初中数学 来源: 题型:
【题目】某工厂生产某品牌的护眼灯,并将护眼灯按质量分成15个等级(等级越高,灯的质量越好.如:二级产品好于一级产品).若出售这批护眼灯,一级产品每台可获利润21元,每提高一个等级每台可多获利润1元,工厂每天只能生产同一个等级的护眼灯,每个等级每天生产的台数如下表所示:
等级(x级) | 一级 | 二级 | 三级 | … |
生产量(y台/天) | 78 | 76 | 74 | … |
(1)已知护眼灯每天的生产量y(台)是等级x(级)的一次函数,请直接写出y与x之间的函数关系式:;
(2)若工厂将当日所生产的护眼灯全部售出,工厂应生产哪一等级的护眼灯,才能获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某研究性学习小组在探究矩形的折纸问题时,将一块直角三角板的直角顶点绕矩形ABCD(AB<BC)的对角线的交点O旋转(①→②→③),图中的M、N分别为直角三角形的直角边与矩形ABCD的边CD、BC的交点。
⑴该学习小组成员意外的发现图①(三角板一直角边与OD重合)中,BN2=CD2+CN2,在图③中(三角板一边与OC重合),CN2=BN2+CD2,请你对这名成员在图①和图③中发现的结论选择其一说明理由。
⑵试探究图②中BN、CN、CM、DN这四条线段之间的数量关系,写出你的结论,并说明理由。
⑶将矩形ABCD改为边长为1的正方形ABCD,直角三角板的直角顶点绕O点旋转到图④,两直角边与AB、BC分别交于M、N,直接写出BN、CN、CM、DM这四条线段之 间所满足的数量关系(不需要证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2017年12月29日,国家发改委批复了昌景黄铁路项目可行性研究报告.该项目位于赣皖两省,线路起自江西省南昌市南昌东站,经上饶市、景德镇市,安徽省黄山市,终至黄山北站.按照设计,行驶180千米,昌景黄高铁列车的平均行驶速度是普通快车的1.5倍,用时比普通快车用时少20分钟,求昌景黄高铁列车的平均行驶速度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥CD,∠ABC=∠ADC,DE垂直于对角线AC,垂足是E,连接BE.
(1)求证:四边形ABCD是平行四边形;
(2)若AB=BE=2,sin∠ACD= ,求四边形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把下列各数填在相应的集合内:
100,﹣0.82,﹣30,3.14,﹣2,0,﹣2011,﹣3.1,,﹣,2.010010001…,
正分数集合:{ …}
整数集合:{ …}
负有理数集合:{ …}
非正整数集合;{ …}
无理数集合:{ …}.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将从1开始的连续自然数按图规律排列:规定位于第m行,第n列的自然数10记为(3,2),自然数15记为(4,2)…
列 行 | 第1列 | 第2列 | 第3列 | 第4列 |
第1行 | 1 | 2 | 3 | 4 |
第2行 | 8 | 7 | 6 | 5 |
第3行 | 9 | 10 | 11 | 12 |
第4行 | 16 | 15 | 14 | 13 |
… | … | … | … | … |
第n行 | … | … | … | … |
按此规律,回答下列问题:
(1)记为(6,3)表示的自然数是__________________.
(2)自然数2018记为_________________.
(3)用一个正方形方框在第span>3列和第4列中任意框四个数,这四个数的和能为2018吗?如果能,求出框出的四个数中最小的数;如果不能,请写出理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com