精英家教网 > 初中数学 > 题目详情
4.下列说法不一定成立的是(  )
A.若a>b,则a+c>b+cB.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b

分析 根据不等式的性质进行判断.

解答 解:A、在不等式a>b的两边同时加上c,不等式仍成立,即a+c>b+c,不符合题意;
B、在不等式a+c>b+c的两边同时减去c,不等式仍成立,即a>b,不符合题意;
C、当c=0时,若a>b,则不等式ac2>bc2不成立,符合题意;
D、在不等式ac2>bc2的两边同时除以不为0的c2,该不等式仍成立,即a>b,不符合题意.
故选:C.

点评 主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:
(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.
(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

14.如图,半圆O的直径AE=4,点B,C,D均在半圆上,若AB=BC,CD=DE,连接OB,OD,则图中阴影部分的面积为π.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.
(1)写出点P2的坐标;
(2)求直线l所表示的一次函数的表达式;
(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.已知点A(-1,y1),B(1,y2)和C(2,y3)都在反比例函数y=$\frac{k}{x}$(k>0)的图象上.则y1<y3<y2(填y1,y2,y3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.
(1)求证:∠ABC=∠EDC;
(2)求证:△ABC≌△EDC.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.如图,已知直线y=$\frac{3}{4}$x-3与x轴、y轴分别交于A、B两点,P是以C(0,1)为圆心,1为半径的圆上一动点,连结PA、PB.则△PAB面积的最大值是(  )
A.8B.12C.$\frac{21}{2}$D.$\frac{17}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.求不等式组$\left\{\begin{array}{l}3x-7<2\\ 2x+3≥1\end{array}\right.$的解集,并把它们的解集在数轴上表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.请看杨辉三角(1),并观察下列等式(2):

根据前面各式的规律,则(a+b)6=a6+6a5b+15a4b2+20a3b3+15a2b4+6ab5+b6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,已知二次函数y=x2+(1-m)x-m(其中0<m<1)的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,对称轴为直线l.设P为对称轴l上的点,连接PA、PC,PA=PC
(1)∠ABC的度数为45°;
(2)求P点坐标(用含m的代数式表示);
(3)在坐标轴上是否存在着点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC相似,且线段PQ的长度最小?如果存在,求出所有满足条件的点Q的坐标;如果不存在,请说明理由.

查看答案和解析>>

同步练习册答案