【题目】矩形纸片ABCD的边长AB=4,AD=2.将矩形纸片沿EF折叠,使点A与点C重合,折叠后在其一面着色(如图),则着色部分的面积为多少?
【答案】
【解析】试题分析:根据矩形的性质,可得AB与CD的关系,根据翻折的性质,可得∠FEA=∠FEC;AD与CG的关系,根据全等三角形的判定与性质,可得FG与BE的关系,根据勾股定理,可得BE的长,根据面积的和差,可得答案.
试题解析:∵ABCD是矩形, ∴AB||CD,
∴∠FEA=∠EFC,
∵将矩形纸片沿EF折叠,使点A与点C重合,∴∠FEA=∠FEC,
∴∠EFC=∠FEC,
∴CF=CE,
∵将矩形纸片沿EF折叠,使点A与点C重合,∴CG=AD=2,
∵ABCD是矩形,∴AD=BC,
∴CG=BC,
在Rt△CGF和Rt△CBE中, ,∴△CGF≌△CBE(HL),∴FG=BE,
设AE=CE=x,则BE=FG=(4﹣x),
在Rt△BCE中,EC2=EB2+BC2 ,即(4﹣x)2+22=x2,
x=,BE=,
∵CF=AE= ,∴DF=BE=,
∴S着色=S四边形BEFC+S△CFG=(BE+CF)BC+CGFG= ×( + )×2+ ×2×=4+ = .
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)
⑴画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;
⑵画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
⑶在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(9分)已知:如图,平行四边形ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.
(1)(4分)求证:△AOD≌△EOC;
(2)(5分)连接AC,DE,当∠B=∠AEB= °时,四边形ACED是正方形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列分解因式正确的是( )
A. m4﹣8m2+64=(m2﹣8)2
B. x4﹣y4=(x2+y2)(x2﹣y2)
C. 4a2﹣4a+1=(2a﹣1)2
D. a(x﹣y)﹣b(y﹣x)=(x﹣y)(a﹣b)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=120,BC=6cm,AB的垂直平分线交BC于点M,交AB于点E,AC的垂直平分线交BC于点N,交AC于点F,则MN的长为( )
A. 1.5cm B. 2cm C. 2.5cm D. 3cm
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com