精英家教网 > 初中数学 > 题目详情
精英家教网如图,将两个全等的等腰直角三角形摆成如图所示的样子(顶点A重合),
①请在图中找出三对相似但不全等的三角形.
②你认为AE2=ED•EB吗?请说明理由.
分析:(1)根据相似(不包括全等)三角形的判定可以得出△ADE∽△BAE,△CDA∽△ADE.
(2)由于△BAC和△AGF都是等腰直角三角形,因此∠B=∠PAG=45°,可得出∠BAE=∠ADE=45°+∠BAD;已知了△EAD和△EBA中,∠AED是公共角,可得出两三角形相似,即可得出结论.
解答:(1)解:△ADE∽△BAE,△CDA∽△ADE,△BAE∽△CDA.
∵△BAC和△AGP都是等腰直角三角形,
∴∠B=∠PAG=45°,精英家教网
∴∠BAE=∠ADE=45°+∠BAD;
∵△EAD和△EBA中,∠AED是公共角,
∴△ADE∽△BAE;
同理,可得△CDA∽△ADE.
∴△BAE∽△CDA.

(2)证明:∵∠DAE=∠B=45°,∠AED=∠BEA,
∴△ADE∽△BAE,
AE
BE
=
DE
AE

∴AE2=ED•EB.
点评:本题考查了相似三角形的判定与性质和等腰直角三角形,学生应熟练掌握两角法,判定三角形相似.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图:一正方形纸片,根据要求进行多次分割,把它分割成若干个直角三角形.具体操作过程如下:
第一次分割:将正方形纸片分成4个全等的直角三角形;第二次分割:将上次得到的直角三角形中的一个再分成4个全等的直角三角形;以后按第二次分割的方法重复进行.
精英家教网
(1)请你设计出两种符合题意的分割方案(分割3次);
(2)设正方形的边长为a,请你通过对其中一种方案的操作和观察,将第二、第三次分割后所得的最小的直角三角形的面积S填入下表:
精英家教网
(3)在条件(2)下,请你猜想:分割所得的最小直角三角形面积S与分割次数n有什么关系?用数学表达式表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,

(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.
(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.
(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,
作业宝
(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.
(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.
(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.

查看答案和解析>>

科目:初中数学 来源:2013年安徽省合肥市第44中学中考数学模拟试卷(一)(解析版) 题型:解答题

如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,

(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.
(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.
(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年河北省承德三中中考数学模拟试卷(一)(解析版) 题型:解答题

如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,

(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.
(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.
(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.

查看答案和解析>>

同步练习册答案