A. | 14 | B. | 12 | C. | 10 | D. | 8 |
分析 根据翻折的性质可得∠ACD=∠ACF,根据两直线平行,内错角相等可得∠ACD=∠CAF,从而得到∠ACF=∠CAF,根据等角对等边可得AF=CF,设AF=x,表示出BF、CF,然后利用勾股定理列方程求出x,再根据三角形的面积列式计算即可得解.
解答 解:由翻折得,∠ACD=∠ACF,
∵长方形对边AB∥CD,
∴∠ACD=∠CAF,
∴∠ACF=∠CAF,
∴AF=CF,
设AF=x,则BF=AB-AF=8-x,
CF=AF=x,
在Rt△BCF中,由勾股定理得,BC2+BF2=CF2,
即42+(8-x)2=x2,
解得x=5,
∴重叠阴影部分△AFC的面积=$\frac{1}{2}$AF•BC=$\frac{1}{2}$×5×4=10.
故选C.
点评 本题考查了翻折变换,矩形的性质,勾股定理,翻折前后对应边相等,对应角相等,此类题目,利用勾股定理列出方程是解题的关键,也是难点.
科目:初中数学 来源: 题型:选择题
A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:初中数学 来源:2016-2017学年湖北省枝江市八年级3月调研考试数学试卷(解析版) 题型:单选题
如果有意义,那么x的取值范围是( )
A. x>1 B. x≥1 C. x≤1 D. x<1
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2016-2017学年湖北省枝江市八年级3月调研考试数学试卷(解析版) 题型:单选题
在Rt△ABC中,∠C=90°,AC=3,BC=4,则点C到AB的距离是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com