【题目】如图,在正方形ABCD中,E为边AD的中点,点F在边CD上,且∠BEF=90°,延长EF交BC的延长线于点G.
(1)求证:△ABE∽△EGB.
(2)若AB=4,求CG的长.
【答案】(1)证明见解析;(2)CG=6.
【解析】
(1)由正方形的性质与已知得出∠A=∠BEG,证出∠ABE=∠G,即可得出结论;
(2)由AB=AD=4,E为AD的中点,得出AE=DE=2,由勾股定理得出BE=,由△ABE∽△EGB,得出,求得BG=10,即可得出结果.
(1)证明:∵四边形ABCD为正方形,且∠BEG=90°,
∴∠A=∠BEG,
∵∠ABE+∠EBG=90°,∠G+∠EBG=90°,
∴∠ABE=∠G,
∴△ABE∽△EGB;
(2)∵AB=AD=4,E为AD的中点,
∴AE=DE=2,
在Rt△ABE中,BE=,
由(1)知,△ABE∽△EGB,
∴,即:,
∴BG=10,
∴CG=BG﹣BC=10﹣4=6.
科目:初中数学 来源: 题型:
【题目】正方形ABCD的边长为4,M,N分别是BC,CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直.
(1)证明:△ABM∽△MCN;
(2)若△ABM的周长与△MCN周长之比是4:3,求NC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种商品,每件的成本每千克18元,规定每千克售价不低于成本,且获利不得高于100%,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 40 | 39 | 38 | 37 |
销售量y(千克) | 20 | 22 | 24 | 26 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),求W与x之间的函数表达式(利润=收入﹣成本),并指出售价为多少元时获得最大利润,最大利润是多少?
(3)该超市若想每天销售利润不低于480元,请结合函数图象帮助超市确定产品的销售单价范围?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△ABC的位置,连接C'B.
(1)求∠ABC'的度数;
(2)求C'B的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的顶点A,B,C的坐标分别是A(﹣1,﹣1),B(﹣4,﹣1),C(﹣4,﹣3).
(1)作出△ABC关于原点O中心对称的图形△A1B1C1,并写出点B的对应点B1的坐标;
(2)作出△A1B1C1绕原点O顺时针旋转90°后的图形△A2B2C2,并写出点C1的对应点C2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,CE是∠DCB的角平分线,且交AB于点E,DB与CE相交于点O,
(1)求证:△EBC是等腰三角形;
(2)已知:AB=7,BC=5,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.
(1)求配色条纹的宽度;
(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数的图象与轴交于两点,与轴交于点.点在函数图象上,轴,且,直线是抛物线的对称轴,是抛物线的顶点.
(1)求的值;
(2)如图①,连接, 线段上的点关于直线的对称点F'恰好在线段BE上,求点的坐标;
(3)如图②,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点.试问:直线右侧的抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com