精英家教网 > 初中数学 > 题目详情

【题目】某超市销售一种商品,每件的成本每千克18元,规定每千克售价不低于成本,且获利不得高于100%,经市场调查,每天的销售量y(千克)与每千克售价x()满足一次函数关系,部分数据如下表:

售价x(/千克)

40

39

38

37

销售量y(千克)

20

22

24

26

(1)yx之间的函数表达式;

(2)设商品每天的总利润为W(),求Wx之间的函数表达式(利润=收入﹣成本),并指出售价为多少元时获得最大利润,最大利润是多少?

(3)该超市若想每天销售利润不低于480元,请结合函数图象帮助超市确定产品的销售单价范围?

【答案】(1)y=﹣2x+100 (2当售价为34元时获得最大利润,最大利润是512(3)销期间商场每天不低于480元,销售单价不低于30元不高于36元.

【解析】

1)设yx的函数关系式为y=kx+b,将x=40y=20x=37y=26分别代入求出kb
2)根据利润=(售价-成本)×销售量列出函数关系式,
3)解方程得到x,然后进行讨论.

(1)yx的函数关系式为ykx+b,将x40y20x37y26分别代入得

解得

yx之间的函数表达式为:y=﹣2x+100

(2)W(x18)y

y=﹣2x+100代入得:W(x18)(2x+100)

W=﹣2x2+136x1800=﹣2(x34)2+512

∴当售价为34元时获得最大利润,最大利润是512

(3)根据题意得﹣2x2+136x1800480

解得:x138x230

∵试销期间单价不低于成本单价,获利又不得高于100%

18≤x≤36

x238不合题意,应舍去,

所以30≤x≤36W≥480

答:销期间商场每天不低于480元,销售单价不低于30元不高于36元.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.

(1)旋转中心是点 ,旋转角度是      度;

(2)若连结EF,则△AEF 三角形;并证明;

(3)若四边形AECF的面积为25,DE=2,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于BC两点.

(1)求yx之间的函数关系式;

(2)直接写出当x>0时,不等式x+b的解集;

(3)若点Px轴上,连接APABC的面积分成1:3两部分,求此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是函数上两点,为一动点,作轴,轴,下列说法正确的是( )

③若,则平分④若,则

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一块含30°角的直角三角板OAB的直角边BO的长恰与另一块等腰直角三角板ODC的斜边OC的长相等,把这两块三角板放置在平面直角坐标系中,且OB=3.

(1)若某反比例函数的图象的一个分支恰好经过点A,求这个反比例函数的解析式;

(2)若把含30°角的直角三角板绕点O按顺时针方向旋转后,斜边OA恰好落在x轴上,点A落在点A′处,试求图中阴影部分的面积.(结果保留π)

【答案】(1)反比例函数的解析式为y=;(2)S阴影=6π-.

【解析】分析:(1)根据tan30°=,求出AB,进而求出OA,得出A的坐标,设过A的双曲线的解析式是y=,把A的坐标代入求出即可;(2)求出∠AOA′,根据扇形的面积公式求出扇形AOA′的面积,求出OD、DC长,求出△ODC的面积,相减即可求出答案.

本题解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3

∴AB=OB·tan 30°=3.

∴点A的坐标为(3,3).

设反比例函数的解析式为y= (k≠0),

∴3,∴k=9,则这个反比例函数的解析式为y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由题意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S阴影=S扇形AOA′-SODC=6π.

点睛:本题考查了勾股定理、待定系数法求函数解析式、特殊角的三角函数值、扇形的面积及等腰三角形的性质,本题属于中档题,难度不大,将不规则的图形的面积表示成多个规则图形的面积之和是解答本题的关键.

型】解答
束】
26

【题目】矩形ABCD一条边AD=8,将矩形ABCD折叠,使得点B落在CD边上的点P处.

(1)如图①,已知折痕与边BC交于点O,连接AP,OP,OA.

① 求证:△OCP∽△PDA;

② 若△OCP与△PDA的面积比为1:4,求边AB的长.

(2)如图②,在(1)的条件下,擦去AO和OP,连接BP.动点M在线段AP上(不与点P,A重合),动点N在线段AB的延长线上,且BN=PM,连接MN交PB于点F,作ME⊥BP于点E.试问动点M,N在移动的过程中,线段EF的长度是否发生变化?若不变,求出线段EF的长度;若变化,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?”

译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”

设每只雀重x斤,每只燕重y斤,可列方程组为_______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点DBC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC

依题意补全图形;

的度数;

,将射线DA绕点D顺时针旋转EC的延长线于点F,请写出求AF长的思路.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于反比例函数yk≠0),下列所给的四个结论中,正确的是(  )

A. 若点(24)在其图象上,则(﹣24)也在其图象上

B. k0时,yx的增大而减小

C. 过图象上任一点Px轴、y轴的垂线,垂足分别AB,则矩形OAPB的面积为k

D. 反比例函数的图象关于直线yxy=﹣x成轴对称

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在△ABC中,∠ACB90°,BC2,∠A30°,点EF分别是线段BCAC的中点,连结EF

1)线段BEAF的位置关系是      

2)如图2,当△CEF绕点C顺时针旋转a时(0°<a180°),连结AFBE,(1)中的结论是否仍然成立.如果成立,请证明;如果不成立,请说明理由.

3)如图3,当△CEF绕点C顺时针旋转a时(0°<a180°),延长FCAB于点D,如果AD62,求旋转角a的度数.

查看答案和解析>>

同步练习册答案