精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,点DBC上任意一点,将线段AD绕点A逆时针方向旋转,得到线段AE,连结EC

依题意补全图形;

的度数;

,将射线DA绕点D顺时针旋转EC的延长线于点F,请写出求AF长的思路.

【答案】(1)见解析;(2)90°;(3)解题思路见解析.

【解析】

1)将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC

2)先判定ABD≌△ACE,即可得到,再根据,即可得出

3)连接DE,由于ADE为等腰直角三角形,所以可求;由 ,可求的度数和的度数,从而可知DF的长;过点A于点H,在RtADH中,由AD=1可求AHDH的长;由DFDH的长可求HF的长;在RtAHF中,由AHHF,利用勾股定理可求AF的长.

解:如图,

线段AD绕点A逆时针方向旋转,得到线段AE

中,

连接DE,由于为等腰直角三角形,所以可求

,可求的度数和的度数,从而可知DF的长;

过点A于点H,在中,由可求AHDH的长;

DFDH的长可求HF的长;

中,由AHHF,利用勾股定理可求AF的长.

故答案为:(1)见解析;(290°;(3)解题思路见解析.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AD平分∠BACBC于点D.点EF分别在边ABAC上,且BEAFFGAB交线段AD于点G,连接BGEF

1)求证:四边形BGFE是平行四边形;

2)若ABG∽△AGFAB10AG6,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某超市销售一种商品,每件的成本每千克18元,规定每千克售价不低于成本,且获利不得高于100%,经市场调查,每天的销售量y(千克)与每千克售价x()满足一次函数关系,部分数据如下表:

售价x(/千克)

40

39

38

37

销售量y(千克)

20

22

24

26

(1)yx之间的函数表达式;

(2)设商品每天的总利润为W(),求Wx之间的函数表达式(利润=收入﹣成本),并指出售价为多少元时获得最大利润,最大利润是多少?

(3)该超市若想每天销售利润不低于480元,请结合函数图象帮助超市确定产品的销售单价范围?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,每个小正方形的边长都为1的顶点都在格点上,回答下列问题:

可以看作是经过若干次图形的变化平移、轴对称、旋转得到的,写出一种由得到的过程:______

画出绕点B逆时针旋转的图形

中,点C所形成的路径的长度为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在x轴的正半轴上依次间隔相等的距离取点A1A2A3A4,…,An,分别过这些点做x轴的垂线与反比例函数y的图象相交于点P1P2P3P4,…Pn,再分别过P2P3P4,…PnP2B1A1P1P3B2A2P2P4B3A3P3,…,PnBn1An1Pn1,垂足分别为B1B2B3B4,…,Bn1,连接P1P2P2P3P3P4,…,Pn1Pn,得到一组RtP1B1P2RtP2B2P3RtP3B3P4,…,RtPn1Bn1Pn,则RtPn1Bn1Pn的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD,将边CD绕点C顺时针旋转60°,得到线段CE,连接DEAEBD交于点F

(1)求∠AFB的度数;

(2)求证:BFEF

(3)连接CF,直接用等式表示线段ABCFEF的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是ABC的边AB上一点,O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.

(1)求证:∠C=90°;

(2)当BC=3,sinA=时,求AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线ABx轴、y轴分别交于点A,B,与反比例函数(为常数,且)在第一象限的图象交于点E,F.过点E作EMy轴于M,过点F作FNx轴于N,直线EMFN交于点C.若(为大于l的常数).记CEF的面积为OEF的面积为,则 =________ (用含的代数式表示)

查看答案和解析>>

同步练习册答案