精英家教网 > 初中数学 > 题目详情

如图,已知:AB∥CD,∠BAE=∠DCF,AC,EF相交于点M,有AM=CM.
(1)求证:AE∥CF;
(2)若AM平分∠FAE,求证:FE垂直平分AC.

(1)证明:∵AB∥CD,
∴∠BAC=∠DCA,
又∵∠BAE=∠DCF,
∴∠EAM=∠FCM,
∴AE∥CF;

(2)证明:∵AM平分∠FAE,
∴∠FAM=∠EAM,
又∵∠EAM=∠FAM,
∴∠FAM=∠FCM,
∴△FAC是等腰三角形,
又∵AM=CM,
∴FM⊥AC,即EF垂直平分AC.
分析:(1)先根据AB∥CD得出∠BAC=∠DCA,再由∠BAE=∠DCF可知∠EAM=∠FCM,故可得出结论;
(2)先由AM平分∠FAE得出∠FAM=∠EAM,再根据∠EAM=∠FAM可知∠FAM=∠FCM,故△FAC是等腰三角形,由等腰三角形三线合一的性质即可得出结论.
点评:本题考查的是线段垂直平分线的性质,熟知线段垂直平分线上任意一点,到线段两端点的距离相等是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为
120

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图,已知线段AB=6,延长线段AB到C,使BC=2AB,点D是AC的中点,则AC的长为
18

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•温州一模)如图,已知线段AB,
(1)线段AB为腰作一个黄金三角形(尺规作图,要求保留作图痕迹,不必写出作法);
(友情提示:三角形两边之比为黄金比的等腰三角形叫做黄金三角形)
(2)若AB=2,求出你所作的黄金三角形的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)如图①,已知弧AB,用尺规作图,作出弧AB的圆心P;
(2)如图②,若弧AB半径PA为18,圆心角为120°,半径为2的⊙O,从弧AB的一个端点A(切点)开始先在外侧滚动到另一个端点B(切点),再旋转到内侧继续滚动,最后转回到初始位置,⊙O自转多少周?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知线段AB、CD分别表示甲、乙两幢楼的高,AB⊥BD,CD⊥BD,从甲楼顶部A处测得乙楼顶部C的仰角α=30°,测得乙楼底部D的俯角β=60°,已知甲楼高AB=24m,求乙楼CD的高.

查看答案和解析>>

同步练习册答案