【题目】如图,正方形ABCD中,点E在CD边上,将△ADE沿AE对折得到△AFE,延长EF交BC边于点G,连结AG.给出结论:①△ABG≌△AFG;②∠EAG=45°;③∠AGB+∠AED=135°.其中正确的结论有( )
A.只有①B.①②C.②③D.①②③
【答案】D
【解析】
根据折叠的性质得到AB=AD=AF,AG=AG,∠B=∠AFG=90°,根据全等三角形的判定定理得到Rt△ABG≌Rt△AFG(HL),故①正确;由折叠的性质得到△DAE≌△FAE,求得∠DAE=∠FAE,根据全等三角形的性质得到∠BAG=∠FAG,于是得到∠EAG=∠EAF+∠GAF=×90°=45°,故②正确;根据五边形的内角和结合全等三角形的性质可得③正确.
解:∵△ADE沿AE折叠得到△AFE,
∴AB=AD=AF,AG=AG,∠B=∠AFG=90°,
∴Rt△ABG≌Rt△AFG(HL),故①正确;
∵△ADE沿AE折叠得到△AFE,
∴△DAE≌△FAE,
∴∠DAE=∠FAE,
∵△ABG≌△AFG,
∴∠BAG=∠FAG,
∵∠BAD=90°,
∴∠EAG=∠EAF+∠GAF=×90°=45°,故②正确;
在五边形ABGED中,∠BGE+∠GED=540°90°90°90°=270°,
∵△DAE≌△FAE,△ABG≌△AFG,
∴∠AED=∠AEF,∠AGF=∠AGB,
∴2∠AGB+2∠AED=270°,
∴∠AGB+∠AED=135°,故③正确,
故选:D.
科目:初中数学 来源: 题型:
【题目】综合与实践
问题情境
在学习了《勾股定理》和《实数》后,某班同学以“已知三角形三边的长度,求三角形面积”为主题开展了数学活动.
操作发现
“毕达哥拉斯”小组的同学想到借助正方形网格解决问题.如图1是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点.在图1中画出△ABC,其顶点A,B,C都是格点,同时构造正方形BDEF,使它的顶点都在格点上,且它的边DE,EF分别经过点C、A,他们借助此图求出了△ABC的面积.
(1)在图1中,所画的△ABC的三边长分别是AB= ,BC= ,AC= ; △ABC的面积为 .
实践探究
(2)在图2所示的正方形网格中画出△DEF(顶点都在格点上),使DE=,DF=, EF=,并写出△DEF的面积.
继续探究
“秦九韶”小组的同学想到借助曾经阅读的数学资料: 已知三角形的三边长分别为a、b、c,求其面积,对此问题中外数学家曾经进行过深入研究.古希腊的几何学家海伦(Heron,约公元50年),在他的著作《度量》一书中,给出了求其面积的海伦公式:
我国南宋时期数学家秦九韶(约1202 ~1261),给出了著名的秦九韶公式:
(3)一个三角形的三边长依次为,,,请你从上述材料中选用适当的公式 求这个三角形的面积.(写出计算过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,已知点D在线段AB的反向延长线上,过AC的中点F作线段GE交∠DAC的平分线于E,交BC于G,且AE∥BC.
(1)求证:△ABC是等腰三角形;
(2)若AE=8,AB=10,GC=2BG,求△ABC的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点,,…,在函数位于第二象限的图象上,点,,…,在函数位于第一象限的图象上,点,,…,在轴的正半轴上,若四边形、,…,都是正方形,则正方形的边长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面每个语句中,都给出了两件可能发生的事情,其中发生的机会相同的是( )
A. 两次掷骰子,掷出的数的和大于与掷出的数的和不大于
B. 掷骰子掷出的数是偶数与掷出的数是奇数
C. 最后一节课是数学与最后一节课不是数学
D. 冬天里下雪和夏天里下雪
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学们知道数学中的整体思想吗?在解决某些问题时,常常需要运用整体的方式对问题进行处理,如:整体思考、整体变形、把一个式子看作整体等,这样可以使问题简化并迅速求解.试运用整体的数学思想方法解决下列问题:
(1)把下列各式分解因式:
① ②
(2)①已知则的值为 .
②已知那么 .
③已知求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:若m2﹣2mn+2n2﹣8n+16=0,求m,n的值.
解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0.
∴(m﹣n)2+(n﹣4)2=0,∵(m﹣n)2≥0,(n﹣4)2≥0,∴(m﹣n)2=0,(n﹣4)2=0,∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)已知:x2+2xy+2y2+2y+1=0,求2x+y的值;
(2)已知:△ABC的三边长a,b,c都是正整数,且满足:a2+b2﹣12a﹣16b+100=0,求△ABC的最大边c的值;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,0),(0,1),(-1,0).一个电动玩具从坐标原点0出发,第一次跳跃到点P1.使得点P1与点O关于点A成中心对称;第二次跳跃到点P2,使得点P2与点P1关于点B成中心对称;第三次跳跃到点P3,使得点P3与点P2关于点C成中心对称;第四次跳跃到点P4,使得点P4与点P3关于点A成中心对称;第五次跳跃到点P5,使得点P5与点P4关于点B成中心对称;…照此规律重复下去,则点P2016的坐标为_____________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com